Egernia gillespieae Australia lizard

Australian blue tongue lizard ancestor was round-in-the-tooth

Australian blue tongue lizard ancestor was round-in-the-tooth

Egernia gillespieae Australia lizard
The reassembled skull bones of Egernia gillespieae, a 15 million year old skink from Riversleigh World Heritage Area of northwestern Queensland. Remarkably similar to modern social skinks (silhouette shown) E. gillespieae instead is equipped with rounded crushing teeth and a deep, thick jaw. Credit: M. Hutchinson, P. Stokes and K. Thorn

Reconstruction of the most complete fossil lizard found in Australia, a 15 million year old relative of our modern blue tongues and social skinks named Egernia gillespieae, reveals the creature was equipped with a robust crushing jaw and was remarkably similar to modern lizards.

A new study lead by Flinders University PHD student Kailah Thorn, published in the journal of Vertebrate Palaeontology, combined the anatomy of of living fossils with DNA data to put a time scale on the family tree of Australia's 'social skinks'.

"This creature looked like something in-between a tree skink and a bluetongue lizard. It would have been about 25 cm long, and unlike any of the living species it was equipped with robust crushing jaws," says Ms Thorn.

The results show that our Australia's bluetongue lizards split from Egernia as early as 25 million years ago.

"The new fossil is unusually well-preserved, with much of the skull, and some limb bones, all from a single individual. It belongs to the genus Egernia, a modern species in this group which are often called 'social skinks' and are known for living in family groups, sharing rocky outcrops and hollow tree stumps."

Remarkably similar to modern social skinks, E. gillespieae instead is equipped with rounded crushing teeth and a deep, thick jaw.

Fossil preparator Dr. Anna Gillespie immersing a large block of Riversleigh Limestone in acid. Credit: Dr. Anna Gillespie

The fossils are from the Riversleigh World Heritage fossil deposits in northwest Queensland, and were named after Dr Anna Gillespie, a UNSW palaeontologist responsible for preparing many of the spectacular fossils from that area.

"I have been preparing the Riversleigh fossil material for quite a few years now and lizard bones are rare elements. When the jaw appeared and was quickly followed by associated skull elements, I had a good feeling it would be a significant addition to the Riversleigh reptile story," says Dr Gillespie.

 

Press release from Flinders University

 


Subsurface imaging technology ground penetrating radar Australia Victoria graves

Lost graves identified by new archaeology methods

Lost graves identified by new archaeology methods

Archaeologists are using subsurface imaging technology to help community groups map unmarked graves

Subsurface imaging technology helps find lost graves in Australia. Credit: Flinders University

"This is a huge issue, particularly for rural communities," says Dr Ian Moffat, Senior Research Fellow in Archaeological Sciences at Flinders University.

"Using geophysics provides a non-invasive and culturally appropriate way to map unmarked grave sites."

Dr Moffat leads a group which recently published the results of using Ground Penetrating Radar (GPR) and GPS surveys to non-invasively map the location of unmarked graves within the Lake Condah Mission Cemetery in Victoria, a state in Australia.

Established in 1869, this cemetery remains an important site for the Gunditjmara community, because while it has only 26 marked graves, it is anecdotally thought to contain more than 100 graves.

The GPR survey identified an additional 14 probable unmarked graves as well as 49 other areas that may contain one or more unmarked burials.

"The great leap forward with this particular study was the close partnership between the Gunditj Mirring Traditional Owners Corporation and the researchers to achieve such a positive outcome," says Dr Moffat.

"Many Australian Indigenous communities are anxious not to disturb graves, so this survey provides useful information to assist the Gunditj Mirring Traditional Owners Corporation in planning future burials within this cemetery by identifying large areas which are free of graves."

Damein Bell, CEO of Gunditj Mirring says, "Our Elders informed the researchers of their knowledge of where the known graves were and our community now have marked the unknown gravesites of our ancestors".

GPR is a geophysical technique that uses high frequency electromagnetic waves to image the subsurface, making it ideal for mapping changes in lithology or soil structure.

Extensive subsurface disturbance present at the Lake Condah Mission Cemetery and the presence of many tree roots made the effective interpretation of GPR data difficult, but it was still possible to delineate areas where no unmarked graves are present.

"This is an important outcome for managing the cultural heritage of the cemetery because it identifies areas where new graves can be emplaced in a culturally appropriate fashion," says Dr Moffat.

"This demonstrates the utility of GPR as a means of effectively managing heritage sites containing unmarked graves, even when substantial subsurface disturbance is present."

Dr Moffat believes the technique of using GPR and GPS readings will now have a much wider application across pioneer and heritage sites throughout Australia and will be undertaking surveys of other cemeteries at Lake Wangary, Berri and Kingscote over coming weeks.

###

The research paper - "Ground penetrating radar investigations at the Lake Condah Mission Cemetery: locating unmarked graves in areas with extensive subsurface disturbance," by Ian Moffat, Julia Garnaut, Celeste Jordan, Anthea Vella, Marian Bailey and Gunditj Mirring Traditional Owners Corporation - has been published by the Journal of the Archaeological and Anthropological Society of Victoria.

Subsurface imaging technology ground penetrating radar Australia Victoria graves
Dr. Ian Moffat, Senior Research Fellow in archaeological sciences at Flinders University, will map the Kingscote pioneer cemetery in May. Credit: Flinders University

Press release from Flinders University