hepatitis B

New research analyses the evolution of the last ten thousand years of the hepatitis B virus

The University of Valencia participates in a research on the evolution of the last ten thousand years of the hepatitis B virus

A study published in the journal Science traces the evolution of the hepatitis B virus from prehistory to the present, revealing dissemination routes and changes in viral diversity. Domingo Carlos Salazar García, researcher from the Prehistory, Archeology and Ancient History Department of the University of Valencia, has participated in this study led by the Max Planck Institute for the Science of Human History (Germany). The research uncovers the evolution of the hepatitis B virus since the Early Holocene by analyzing the largest dataset of ancient viral genomes produced to date.

hepatitis B
Domingo Carlos Salazar García, researcher from the Prehistory, Archeology and Ancient History Department of the University of Valencia

“This research puts upfront a reality many times ignored but obvious, that viruses have been linked to humans since prehistoric times”, highlighted Salazar, graduated in Medicine and in History, researcher of excellence of the Valencian Community at the University of Valencia. “If SARS-COV-2 has been able to put human societies in check worldwide during the twenty-first century, we can only begin to imagine how viral diseases influenced life in prehistoric times”, he explains. “Historians and archaeologists must start considering more the influence of viruses and other agents that until now have been invisible on the archaeological record when reconstructing past lifestyles”, he says.

The hepatitis B virus (HBV) is a major health problem worldwide, causing close to one million deaths each year. Recent ancient DNA studies have shown that HBV has been infecting humans for millennia, but its past diversity and dispersal routes remain largely unknown. A new study conducted by a large team of researchers from all around the world provides major insights into the evolutionary history of HBV by examining the virus’ genomes from 137 ancient Eurasians and Native Americans dated between ~10,500 and ~400 years ago. Their results highlight dissemination routes and shifts in viral diversity that mirror well-known human migrations and demographic events, as well as unexpected patterns and connections to the present.

Present-day HBV strains are classified into nine genotypes, two of which are found predominantly in populations of Native American ancestry. The study provides strong evidence that these strains descend from an HBV lineage that diverged around the end of the Pleistocene and was carried by some of the first inhabitants of the Americas.

“Our data suggest that all known HBV genotypes descend from a strain that was infecting the ancestors of the First Americans and their closest Eurasian relatives around the time these populations diverged”, says Denise Kühnert, leader of the research group.

 

HBV in prehistoric Europe

The study also shows that the virus was present in large parts of Europe as early as 10,000 years ago, before the spread of agriculture to the continent. “Many human pathogens are thought to have emerged after the introduction of agriculture, but HBV was clearly already affecting prehistoric hunter-gatherer populations”, says Johannes Krause, director of the Department of Archaeogenetics at the Max Planck Institute for Evolutionary Anthropology and co-supervisor of the study.

After the Neolithic transition in Europe, the HBV strains carried by hunter-gatherers were replaced by new strains that were likely spread by the continent’s first farmers, mirroring the large genetic influx associated with the expansion of farming groups across the region. These new viral lineages continued to prevail throughout western Eurasia for around 4,000 years. The dominance of these strains lasted through the expansion of Western Steppe Herders around 5,000 years ago, which dramatically altered the genetic profile of Europeans but remarkably was not associated with the spread of new HBV variants.

 

The collapse and re-emergence of pre-historic HBV

One of the most surprising findings of the study is a sudden decline of HBV diversity in western Eurasia during the second half of the 2nd millennium BCE, a time of major cultural shifts, including the collapse of large Bronze Age state societies in the eastern Mediterranean region.

“This could point to important changes in epidemiological dynamics over a very large region during this period, but we will need more research to understand what happened”, says Arthur Kocher, lead author and researcher in the group.

All ancient HBV strains recovered in western Eurasia after this period belonged to new viral lineages that still prevail in the region today. However, it appears that one variant related to the previous prehistoric diversity of the region has persisted to the present. This prehistoric variant has evolved into a rare genotype that seems to have emerged recently during the HIV pandemic, for reasons that remain to be understood.

 

Article: Kocher et al. “Ten millennia of hepatitis B virus evolution”, Science, 2021. DOI: https://www.science.org/doi/10.1126/science.abi5658

Press release from the University of Valencia and Asociación RUVID.


genomes Scythians

Ancient Genomes Trace the Origin and Decline of the Scythians

Ancient Genomes Trace the Origin and Decline of the Scythians

Generally thought of as fierce horse-warriors, the Scythians were a multitude of Iron Age cultures who ruled the Eurasian steppe, playing a major role in Eurasian history. A new study published in Science Advances analyzes genome-wide data for 111 ancient individuals spanning the Central Asian Steppe from the first millennia BCE and CE. The results reveal new insights into the genetic events associated with the origins, development and decline of the steppe’s legendary Scythians.

Because of their interactions and conflicts with the major contemporaneous civilizations of Eurasia, the Scythians enjoy a legendary status in historiography and popular culture. The Scythians had major influences on the cultures of their powerful neighbors, spreading new technologies such as saddles and other improvements for horse riding. The ancient Greek, Roman, Persian and Chinese empires all left a multitude of sources describing, from their perspectives, the customs and practices of the feared horse warriors that came from the interior lands of Eurasia.

An aerial view of Hun-Xianbi culture burials. Both horses and warriors can be identified. Credits: © Zainolla Samashev

Still, despite evidence from external sources, little is known about Scythian history. Without a written language or direct sources, the language or languages they spoke, where they came from and the extent to which the various cultures spread across such a huge area were in fact related to one another, remain unclear.

The Iron Age transition and the formation of the genetic profile of the Scythians

A new study published in Science Advances by an international team of geneticists, anthropologists and archeologists lead by scientists from the Archaeogenetics Department of the Max Planck Institute for the Science of Human History in Jena, Germany, helps illuminate the history of the Scythians with 111 ancient genomes from key Scythian and non-Scythian archaeological cultures of the Central Asian steppe. The results of this study reveal that substantial genetic turnovers were associated with the decline of the long-lasting Bronze Age sedentary groups and the rise of Scythian nomad cultures in the Iron Age. Their findings show that, following the relatively homogenous ancestry of the late Bronze Age herders, at the turn of the first millennium BCE, influxes from the east, west and south into the steppe formed new admixed gene pools.

Mound 4 of the Eleke Sazy necropolis in eastern Kazakhstan. Credits: © Zainolla Samashev

The diverse peoples of the Central Asian Steppe

The study goes even further, identifying at least two main sources of origin for the nomadic Iron Age groups. An eastern source likely originated from populations in the Altai Mountains that, during the course of the Iron Age, spread west and south, admixing as they moved. These genetic results match with the timing and locations found in the archeological record and suggest an expansion of populations from the Altai area, where the earliest Scythian burials are found, connecting different renowned cultures such as the Saka, the Tasmola and the Pazyryk found in southern, central and eastern Kazakhstan respectively. Surprisingly, the groups located in the western Ural Mountains descend from a second separate, but simultaneous source. Contrary to the eastern case, this western gene pool, characteristic of the early Sauromatian-Sarmatian cultures, remained largely consistent through the westward spread of the Sarmatian cultures from the Urals into the Pontic-Caspian steppe.

The decline of the Scythian cultures associated with new genetic turnovers

The study also covers the transition period after the Iron Age, revealing new genetic turnovers and admixture events. These events intensified at the turn of the first millennium CE, concurrent with the decline and then disappearance of the Scythian cultures in the Central Steppe. In this case, the new far eastern Eurasian influx is plausibly associated with the spread of the nomad empires of the Eastern steppe in the first centuries CE, such as the Xiongnu and Xianbei confederations, as well as minor influxes from Iranian sources likely linked to the expansion of Persian-related civilization from the south.

Although many of the open questions on the history of the Scythians cannot be solved by ancient DNA alone, this study demonstrates how much the populations of Eurasia have changed and intermixed through time. Future studies should continue to explore the dynamics of these trans-Eurasian connections by covering different periods and geographic regions, revealing the history of connections between west, central and east Eurasia in the remote past and their genetic legacy in present day Eurasian populations.

The burial of a social elite known as 'Golden Man' from the Eleke Sazy necropolis. Credits: © Zainolla Samashev

Press release from Max Planck Institute for the Science of Human History in Jena on the new study that helps illuminate the history of the Scythians with 111 ancient genomes from archaeological cultures of the Central Asian steppe.


The recovery of fluted points from America and Arabia provides example of independent invention

An Iconic Native American Stone Tool Technology Discovered in Arabia

The recovery of distinctive fluted points from both America and Arabia provides one of the best examples of ‘independent invention’ across continents

A new paper published in the journal PLOS ONE examines fluted projectile points from southern Arabia, detailing production methods and technical aspects that indicate differences in function from the technology of the Americas, despite similarities in form. Findings from experimentation and comparative analysis suggest that highly-skilled, convergent technologies can have varying anthropological implications.
The sites of Manayzah (Yemen) and Ad-Dahariz (Oman) yielded dozens of fluted points. The Arabian examples date to the Neolithic period, about 8,000 to 7,000 years ago, at least two thousand years later than the American examples. Credits: Joy McCorriston, OSU

 

A new study led by archaeologists from the CNRS, the Inrap, the Ohio State University and the Max Planck Institute for the Science of Human History, reports on fluted points from the archaeological sites of Manayzah in Yemen and Ad-Dahariz in Oman. Fluted stone tools are a distinctive, technologically advanced form of projectile points, including spearheads and arrowheads. Fluting is a specific technique that involves the extraction of an elongated flake along the length of a projectile point, leaving a distinctive groove or depression at the base of the spearhead or arrowhead.

Fluting is a distinct technological tradition invented by early human cultures that spread across the Americas. Fluted point technology is very well known in North America, evidenced by finds across the continent dating from 13,000 to 10,000 years ago. As lead author Dr. Rémy Crassard of the CNRS notes, "Until the early 2000s, these fluted points were unknown elsewhere on the planet. When the first isolated examples of these objects were recognized in Yemen, and more recently in Oman, we recognized that there could be huge implications."

The sites of Manayzah and Ad-Dahariz yielded dozens of fluted points. The Arabian examples date to the Neolithic period, about 8,000 to 7,000 years ago, at least two thousand years later than the American examples. As Professor Petraglia of the Max Planck explains, "Given their age and the fact that the fluted points from America and Arabia are separated by thousands of kilometers, there is no possible cultural connection between them. This is then a clear and excellent example of cultural convergence, or independent invention in human history."

fluted projectile points Arabia America Manayzah Ad-Dahariz fluting
Fluting is a specific technique that involves the extraction of an elongated flake along the length of a projectile point, leaving a distinctive groove or depression at the base of the spearhead or arrowhead. Credit: Rémy Crassard, CNRS

The new PLOS ONE article carefully examines the fluted points found in south Arabia. Detailed technological analysis, backed up by stone tool experiments and replication by an expert modern flintknapper, illustrate the similarities between the American and Arabian fluting procedures.

In addition to the similarities, the authors of the new study also investigated the contrasts between the technologies of the two regions. Technological differences were apparent in the nature and location of the flute. The authors emphasize that the 'fluting method' was likely a mental conceptualization of stone tool manufacture, more than just a technical way to produce a projectile and hafting zone. Whereas the apparent function of fluting in the Americas is to facilitate hafting, or attaching the point to a shaft, most of the Arabian fluted points do not have hafting as a functional final aim. The fluting concept and the method itself are the same in both American and Arabia, yet the final aim of fluting appears to be different.

Arabian and American fluted point technologies were highly specialized stone tool production methods. The PLOS ONE study of Arabian fluting technology demonstrates that similar innovations and inventions were developed under different circumstances and that such highly-skilled and convergent production methods can have different anthropological implications. As discussed in the article, Professor McCorriston argues that "fluting in Arabia was used as a display of skill, rather than serving a purely functional purpose such as hafting, as is more widely accepted in the Americas."

In Arabian prehistory, southern Arabia experienced developments of local origin, with multiple examples of inventions and innovations not culturally transmitted by outside traditions. The fluting method is then a hallmark of this indigenous development in the south Arabian Neolithic.

 

Publication

Rémy Crassard, Vincent Charpentier, Joy McCorriston, Jérémie Vosges, Sofiane Bouzid, Michael PetragliaFluted-point technology in Neolithic Arabia: An independent invention far from the Americas, PLOS ONE

 

Press release from the Max Planck Institute for the Science of Human History

 

In ancient Arabia, some tools were created to show off skills

Fluted projectile points were used like a “peacock’s feathers”

This rock shelter was part of the excavation of the Manayzah site in Yemen. Credits: Joy McCorriston

People living in southern Arabia some 8,000 years ago created intricate stone weapons that were not just useful, but designed to “show off” their tool-making skills, a new study suggests.

Researchers from the French National Centre for Scientific Research (CNRS), The Ohio State University and the Max Planck Institute for the Science of Human History excavated and examined projectile points – such as spearheads and arrowheads – created during the Neolithic period in what is now Yemen and Oman.

They found that the Arabians independently invented a process to create projectile points – called fluting – that was first used by people living in North America thousands of years earlier.

But there was one key difference between fluting as it was used in North America and the way it was used in Arabia, said Joy McCorriston, co-author of the study and professor of anthropology at Ohio State.

In North America, fluting was used just to make the arrowhead or spearhead more functional. But in Arabia, people also used it to demonstrate their technical skills.

“It was like a peacock’s feathers – it was all for appearance. They used fluting to show just how skilled they were at using this very difficult technology, with its heightened risk of failure,” McCorriston said.

The study was published today (Aug. 5, 2020) in the journal PLOS ONE.

The scientists studied projectile points from two archaeological sites: Manayzah, in Yemen, and Ad-Dahariz, in Oman. McCorriston and a team from Ohio State oversaw the excavation in Manayzah, which lasted from 2004 to 2008.

Finding fluted points outside of North America was an important discovery, said Rémy Crassard of CNRS, lead author of the study.

“These fluted points were, until recently, unknown elsewhere on the planet. This was until the early 2000s, when the first isolated examples of these objects were recognized in Yemen, and more recently in Oman,” Crassard said.

Fluting involves a highly skilled process of chipping off flakes from a stone to create a distinctive channel. It is difficult and takes much practice to perfect, McCorriston said.

In North America, almost all fluting on projectile points was done near the base, so that the implement could be attached with string to the arrow or spear shaft. In other words, it had a practical application, she said.

But in this study, the researchers found some Arabian points with fluting that appeared to have no useful purpose, such as near the tip.

As part of the study, the researchers had a master technician in flintknapping – the shaping of stones – attempt to create projectile points in a way similar to how researchers believe the ancient Arabians did.

“He made hundreds of attempts to learn how to do this. It is difficult and a flintknapper breaks a lot of these points trying to learn how to do it right,” McCorriston said.

The question, then, is why would these Neolithic people do this when it was so costly and time-consuming and didn’t make the points more useful? In addition, they only used fluting on some points.

“Of course, we can’t say for sure, but we think this was a way for skilled toolmakers to signal something to others, perhaps that one is a good hunter, a quick study, or dexterous with one’s hands,” she said.

“It showed one was good at what one did. This could improve one’s social standing in the community.”

The findings suggested that while there were many similarities between the American and Arabian fluted points, there were also differences. The way that people performed the fluting in the two places was different, which is not surprising since they were separated by thousands of miles and thousands of years, McCorriston said.

Finding the fluted points in Arabia provides one of the best examples of “independent invention” across continents, said co-author Michael Petraglia of the Max Planck Institute.

“Given their age, and the fact that the fluted points from America and Arabia are separated by thousands of kilometers, there is no possible cultural connection between them,” Petraglia said.

“This is a clear and excellent example of cultural convergence, or independent invention, in human history.”

This study is part of the larger Roots of Agriculture in Southern Arabia (RASA) project, co-led by McCorriston. The project, which included 12 years of field work in Yemen, explored the first use of domesticated animals in Arabia and the societies that developed around them.

Their work is featured in a new book co-edited by McCorriston, Landscape History of Hadramawt: The Roots of Agriculture in Southern Arabia (RASA Project 1998-2008). The book won The Jo Anne Stolaroff Cotsen Prize, which honors outstanding studies in archaeology.

 

 

Press release from the Ohio State University

Native American stone tool technology found in Arabia

fluted projectile points Arabia America Manayzah Ad-Dahariz fluting
Stone fluted points dating back some 8,000 to 7,000 years ago, were discovered on archaeological sites in Manayzah, Yemen and Ad-Dahariz, Oman. Until now, the prehistoric technique of fluting had been uncovered only on 13,000 to 10,000-year-old Native American sites. Credits: © Jérémie Vosges / CNRS

Stone fluted points dating back some 8,000 to 7,000 years ago, were discovered on archaeological sites in Manayzah, Yemen and Ad-Dahariz, Oman. Spearheads and arrowheads were found among these distinctive and technologically advanced projectile points. Until now, the prehistoric technique of fluting had been uncovered only on 13,000 to 10,000-year-old Native American sites. According to a study led by an international team of archaeologists from the CNRS(1), Inrap, Ohio State University and the Max Planck Institute for the Science of Human History, the difference in age and geographic location implies there is no connection between the populations who made them. This is therefore an example of cultural convergence for an invention which required highly-skilled expertise. And yet, despite similar fluting techniques, the final aim appears to be different. Whereas in the Americas the points were used to facilitate hafting, or attaching the point to a shaft, fluting in Arabia was possibly a mere display of knapping skills.

Notes

(1) Researchers based in France are affiliated with the Centre français de recherche de la péninsule arabique (CNRS / Ministry for Europe and Foreign Affairs; formerly CEFAS), the laboratoire Archéorient de la Maison de l'Orient et de la Méditerranée (CNRS / Université Lumière Lyon 2 / AMU / ENS Lyon / Université Claude Bernard Lyon 1 / Université Jean Moulin / Université Jean Monnet) and the laboratoire Archéologies et sciences de l'antiquité (CNRS / Université Panthéon-Sorbonne / Université Paris Nanterre / Ministère de la culture).

 

Press release from CNRS


millets Mongolia

How millets sustained Mongolia's empires

How millets sustained Mongolia's empires

Stable isotope analyses reveals dramatic diet diversification at the onset of the steppe's earliest empires

 

The historic economies of Mongolia are among the least understood of any region in the world. The region's persistent, extreme winds whisk away signs of human activity and prevent the buildup of sediment which archaeologists rely on to preserve the past. Today crop cultivation comprises only a small percent of Mongolia's food production, and many scholars have argued that Mongolia presents a unique example of dense human populations and hierarchical political systems forming without intensive farming or stockpiling grains.

The current study, led by Dr. Shevan Wilkin of the Max Planck Institute for the Science of Human History provides, for the first time, a detailed glimpse into the diets and lives of ancient Mongolians, underscoring the importance of millets during the formation of the earliest empires on the steppe.

Isotopic analysis and the imperial importance of millets

millets Mongolia
Mongolian landscape with pastoral herd of sheep and goats. Credits: Alicia Ventresca Miller

Collaborating with archaeologists from the National University of Mongolia and the Institute of Archaeology in Ulaanbaatar, Dr. Wilkin and her colleagues from the MPI SHH sampled portions of teeth and rib bones from 137 previously excavated individuals. The skeletal fragments were brought back to the ancient isotope lab in Jena, Germany, where researchers extracted bone collagen and dental enamel to examine the ratios of stable nitrogen and carbon isotopes within. With these ratios in hand, scientists were able to reconstruct the diets of people who lived, ate, and died hundreds to thousands of years ago.

Researchers tracked the trends in diet through the millennia, creating a "dietscape" which clearly showed significant differences between the diets of Bronze Age peoples and those who lived during the Xiongnu and Mongol Empires. A typical Bronze Age Mongolian diet was based on milk and meat, and was likely supplemented with small amounts of naturally available plants. Later, during the Xiongnu Empire, human populations displayed a larger range of carbon values, showing that some people remained on the diet common in the Bronze Age, but that many others consumed a high amount of millet-based foods. Interestingly, those living near the imperial heartlands appear to have been consuming more millet-based foods than those further afield, which suggests imperial support for agricultural efforts in the more central political regions. The study also shows an increase in grain consumption and increasing dietary diversity through time, leading up to the well-known Mongolian Empire of the Khans.

Rethinking Mongolian prehistory

Horses are still used by many for transport across Mongolia. Credits: Shevan Wilkin

The new discoveries presented in this paper show that the development of the earliest empires in Mongolia, like in other parts of the world, was tied to a diverse economy that included the local or regional production of grain. Dr. Bryan K. Miller, a co-author who studies the historical and archaeological records of Inner Asian empires, remarks that "these regimes were like most empires, in that they directed intricate political networks and sought to amass a stable surplus - in this case a primarily pastoral one that was augmented by other resources like millet."

"In this regard," Dr. Miller adds, "this study brings us one step closer to understanding the cultural processes that led humanity into the modern world."

The view that everyone in Mongolian history was a nomadic herder has skewed discussions concerning social development in this part of the world. Dr. Wilkin notes that "setting aside our preconceived ideas of what prehistory looked like and examining the archaeological record with modern scientific approaches is forcing us to rewrite entire sections of humanity's past." Dr. Spengler, the director of the archaeobotany labs at the MPI SHH, emphasizes the importance of this discovery, noting that "this study pulls the veil of myth and lore off of the real people who lived in Mongolia millennia ago and lets us peak into their lives."

millets Mongolia
Cultivated land in northern Mongolia. Credits: Alicia Ventresca Miller

###

Publication information:

Title: Economic Diversification Supported the Growth of Mongolia's Nomadic Empires

Authors: Shevan Wilkin, Alicia Ventresca Miller, Bryan K. Miller, Robert N. Spengler, William T. T. Taylor, Ricardo Fernandes, Madeleine Bleasdale, Jana Zech, S. Ulziibayar, Erdene Myagmar, Nicole Boivin, Patrick Roberts

Publication: Scientific Reports

DOI: 10.1038/s41598-020-60194-0

 

Press release from the Max Planck Institute for the Science of Human History / DE


5,000-year-old milk proteins point to the importance of dairying in eastern Eurasia

5,000-year-old milk proteins point to the importance of dairying in eastern Eurasia

Recent findings push back estimates of dairying in the eastern Steppe by more than 1,700 years, pointing to migration as a potential means of introduction

 

Today dairy foods sustain and support millions around the world, including in Mongolia, where dairy foods make up to 50% of calories consumed during the summer. Although dairy-based pastoralism has been an essential part of life and culture in the eastern Eurasian Steppe for millennia, the eastward spread of dairying from its origin in southwest Asia and the development of these practices is little understood. The current study, led by Shevan Wilkin and Jessica Hendy of the Max Planck Institute for the Science of Human History, presents the earliest evidence for dairy consumption in East Asia, circa 3000 BCE, and offers insights into the arrival and evolution of dairy pastoralism in prehistoric Mongolia.

dairying Eurasia
These are horses on the steppe. Credits: Björn Reichhardt

Earliest dairy consumption & a possible path of entry

The highly mobile nature of pastoralist societies and the severe winds of the Eastern Steppe make detecting occupied sites with direct evidence into the lives and culture of ancient Mongolians exceedingly rare. Instead, the researchers looked for clues in ritual human burial mounds, often marked by stone monuments and occasionally featuring satellite animal graves.

In collaboration with the National University of Mongolia, researchers analyzed dental calculus from individuals ranging from the Early Bronze Age to the Mongol Period. Three-quarters of all individuals contained evidence that they had consumed dairy foods, which demonstrates the widespread importance of this food source in both prehistoric and historic Mongolia. The study's results include the earliest direct evidence for dairy consumption in East Asia, identified in an individual from the Afanasievo site of Shatar Chuluu, which dates to roughly 3000 BCE. Previous DNA analysis on this individual revealed non-local genetic markers consistent with Western Steppe Herder populations, presenting Early Bronze Age Afanasievo migrations westward via the Russian Altai as a viable candidate for the introduction of dairy and domestic livestock into eastern Eurasia.

Multiple different animal species were used for their milk

dairying Eurasia
These are sheep and goat herds in Mongolia. Credits: Björn Reichhardt

By sequencing the milk proteins extracted from the dental calculus, the scientists were able to determine which animal species were being used for dairy production, and thereby help to trace the progression of domestication, dairying, and pastoralism in the region. "Modern Mongolians use cow, sheep, goat, yak, camel, horse and reindeer for milk today, yet when each of these species were first utilized for dairy in Mongolia remains unclear," says Shevan Wilkin, lead author of the study. "What is clear is that the crucial renewable calories and hydration made available through the incorporation of dairying would have become essential across the arid and agriculturally challenging ancient Eastern Steppe."

The earliest individuals to show evidence of dairy consumption lived around 5000 years ago and consumed milk from ruminant species, such as cattle, sheep, and goats. A few thousand years later, at Bronze Age sites dated to after 1200 BCE, the researchers find the first evidence of horse milk consumption, occurring at the same time as early evidence for horse bridling and riding, as well as the use of horses at ritual burial sites. In addition, the study shows that during the Mongol Empire circa 1200-1400 CE, people also consumed the milk of camels. "We are excited that through the analysis of proteins we are able to see the consumption of multiple different animal species, even sometimes in the same individual. This gives us a whole new insight into ancient dairying practices" says Jessica Hendy, senior author of the study.

Millenia after the first evidence of horse milk consumption, horses remain vital to the daily lives of many in modern Mongolia, where mounted pastoralists rely on them to manage large herds of livestock, transport people and supplies, and provide a primary source of meat and milk. "Our findings suggest that the incorporation of horses into dairy pastoralism in Eastern Eurasia was closely linked to a broader economic transformation in the use of horses for riding, movement, and diet," says William Taylor of the University of Colorado-Boulder, one of the study's coauthors.

Although the earliest individual sampled in this study showed evidence of dairy consumption, the researchers hope future studies will examine individuals from previous time periods. "In order to form a clearer picture of the origins of dairying in this region, we need to understand the impact of western steppe herder migrations and confirm whether dairying was occurring in Mongolia prior to their arrival," Shevan Wilkin concludes.

dairying Eurasia
This is a horse burial at Morin Mort, Mongolia. Credits: William Taylor

###

Publication information:

Title: Dairy pastoralism sustained Eastern Eurasian steppe populations for 5000 years

Authors: Shevan Wilkin, Alicia Ventresca Miller, William T.T. Taylor, Bryan K. Miller, Richard W. Hagan, Madeleine Bleasdale, Ashley Scott, Sumiya Gankhuyg, Abigail Ramsoe, S. Uliziibayar, Christian Trachsel, Paolo Nanni, Jonas Grossmann, Ludovic Orlando, Mark Horton, Philipp W. Stockhammer, Erdene Myagmar, Nicole Boivin, Christina Warinner, Jessica Hendy

Publication: Nature Ecology & Evolution

DOI: 10.1038/s41559-020-1120-y

 

Press release from the Max Planck Institute for the Science of Human History / DE


5,200-year-old grains in the eastern Altai Mountains redate trans-Eurasian crop exchange

5,200-year-old grains in the eastern Altai Mountains redate trans-Eurasian crop exchange

Agricultural crops dispersed across Eurasia more than five millennia ago, causing significant cultural change in human populations across the ancient world. New discoveries in the Altai Mountains illustrate that this process occurred earlier than believed

trans-Eurasian crop exchange
Dr. Xinying Zhou and his team from the IVPP in Beijing excavated the Tangtian Cave site during the summer of 2016. Credits: Xinying Zhou

Most people are familiar with the historical Silk Road, but fewer people realize that the exchange of items, ideas, technology, and human genes through the mountain valleys of Central Asia started almost three millennia before organized trade networks formed. These pre-Silk Road exchange routes played an important role in shaping human cultural developments across Europe and Asia, and facilitated the dispersal of technologies such as horse breeding and metal smelting into East Asia. One of the most impactful effects of this process of ancient cultural dispersal was the westward spread of northeast Asian crops and the eastward spread of southwest Asian crops. However, until the past few years, a lack of archaeobotanical studies in Central Asia left a dearth of data relating to when and how this process occurred.

This new study, led by scientists from the Chinese Academy of Sciences and the Max Planck Institute for the Science of Human History, provides details of recently recovered ancient grains from the far northern regions of Inner Asia. Radiocarbon dating shows that the grains include the oldest examples of wheat and barley ever recovered this far north in Asia, pushing back the dates for early farming in the region by at least a millenium. These are also the earliest domesticated plants reported from the northern half of Central Asia, the core of the ancient exchange corridor. This study pulls together sedimentary pollen and ancient wood charcoal data with archaeobotanical remains from the Tiangtian archaeological site in the Chinese Altai Mountains to reveal how humans cultivated crops at such northern latitudes. This study illustrates how adaptable ancient crop plants were to new ecological constraints and how human cultural practices allowed people to survive in unpredictable environments.

The Northern Dispersal of Cereal Grains

The ancient relatives of wheat and barley plants evolved to grow in the warm and dry climate of the eastern Mediterranean and southwest Asia. However, this study illustrates that ancient peoples were cultivating these grasses over five and a half thousand kilometers to the northeast of where they originally evolved to grow. In this study, Dr. Xinying Zhou and his colleagues integrate paleoenvironmental proxies to determine how extreme the ecology was around the archaeological cave site of Tangtian more than five millennia ago, at the time of its occupation. The site is located high in the Altai Mountains on a cold, dry landscape today; however, the study shows that the ecological setting around the site was slightly warmer and more humid at the time when people lived in and around this cave.

The slightly warmer regional conditions were likely the result of shifting air masses bringing warmer, wetter air from the south. In addition to early farmers using a specific regional climate pocket to grow crops in North Asia, analysis showed that the crops they grew evolved to survive in such northern regions. The results of this study provide scholars with evidence for when certain evolutionary changes in these grasses occurred, including changes in the programed reliance of day length, which signals to the plant when to flower, and a greater resistance to cold climates.

trans-Eurasian crop exchange
Charred seeds from Tontian Cave site. Credits: Xinying Zhou

The Trans-Eurasian Exchange and Crop Dispersal

The ancient dispersal of crops across Inner Asia has received a lot of attention from biologists and archaeologists in recent years; as Dr. Spengler, one of the study's lead authors, discusses in his recent book Fruit from the Sands, these ancient exchange routes shaped the course of human history. The mingling of crops originating from opposite ends of Asia resulted in the crop-rotation cycles that fueled demographic growth and led to imperial formation. East Asian millets would become one of the most important crops in ancient Europe and wheat would become one of the most important crops in East Asia by the Han Dynasty. While the long tradition of rice cultivation in East Asia made rice a staple of the Asian kitchen, Chinese cuisine would be unrecognizable without wheat-based food items like steamed buns, dumplings, and noodles. The discovery that these plants dispersed across Eurasia earlier than previously understood will have lasting impacts on the study of cultivation and labor practices in ancient Eurasia, as well as the history cultural contact and shifts in culinary systems throughout time.

These new discoveries provide reason to question these views, and seem to suggest that mixed small-scale human populations made major contributions to world history through migration and cultural and technological exchange. "This study not only presents the earliest dates for domesticated grains in far North Asia," says Professor Xiaoqiang Li, director of the Institute of Vertebrate Paleontology and Paleoanthropology in Beijing, "it represents the earliest beginning of a trans-Eurasian exchange that would eventually develop into the great Silk Road".

Dr. Xinying Zhou, who headed the study and directs a research team at the IVPP in Beijing, emphasizes that "this discovery is a testament to human ingenuity and the amazing coevolutionary bond between people and the plants that they maintain in their cultivated fields."

photo of the stone men (????? Chimulchek Culture) in the steppe area of Altai Mountains. These figures are characteristic of the peoples who live in the area around the time of occupation at Tongtian. These specific examples are located at the Chimulchek site (ca. 4000 years old) and not far from Tongtian Cave. Ceramic sherds from the cave suggest that the occupants in the cave shared similar cultural traits to other people in the region. Credits: Jianjun Yu

###

Title: 5200-year-old cereal grains from the eastern Altai Mountains predate the trans-Eurasian crop exchange
Authors: Xinying Zhou, Jianjun Yu, Robert Nicolas Spengler, Hui Shen, Keliang Zhao, Junyi Ge, Yige Bao, Junchi Liu, Qingjiang Yang, Guanhan Chen, Peter Weiming Jia, and Xiaoqiang Li
Publication: Nature Plants
DOI: https://doi.org/10.1038/s41477-019-0581-y

 

The press release about the trans-Eurasian crop exchange is from Max Planck Institute for the Science of Human History / DE


Neanderthals glue stone tools

Neanderthals used resin 'glue' to craft their stone tools

Neanderthals used resin 'glue' to craft their stone tools

Neanderthals glue stone tools
Artist's rendition of Earth approximately 60,000 years ago. Picture from nasa.gov

Archaeologists working in two Italian caves have discovered some of the earliest known examples of ancient humans using an adhesive on their stone tools--an important technological advance called "hafting."

The new study, which included CU Boulder's Paola Villa, shows that Neanderthals living in Europe from about 55 to 40 thousand years ago traveled away from their caves to collect resin from pine trees. They then used that sticky substance to glue stone tools to handles made out of wood or bone.

The findings add to a growing body of evidence that suggests that these cousins of Homo sapiens were more clever than some have made them out to be.

"We continue to find evidence that the Neanderthals were not inferior primitives but were quite capable of doing things that have traditionally only been attributed to modern humans," said Villa, corresponding author of the new study and an adjoint curator at the CU Museum of Natural History.

Neanderthals glue stone tools
Flints bearing traces of pine resin. The letter "R" indicates the presence of visible resin, and the arrows point to spots where researchers sampled material for chemical analysis. (Credit: Degano et al. 2019, PLOS ONE)

That insight, she added, came from a chance discovery from Grotta del Fossellone and Grotta di Sant'Agostino, a pair of caves near the beaches of what is now Italy's west coast.

Those caves were home to Neanderthals who lived in Europe during the Middle Paleolithic period, thousands of years before Homo sapiens set foot on the continent. Archaeologists have uncovered more than 1,000 stone tools from the two sites, including pieces of flint that measured not much more than an inch or two from end to end.

In a recent study of the tools, Villa and her colleagues noticed a strange residue on just a handful of the flints--bits of what appeared to be organic material.

"Sometimes that material is just inorganic sediment, and sometimes it's the traces of the adhesive used to keep the tool in its socket" Villa said.

Warm fires

To find out, study lead author Ilaria Degano at the University of Pisa conducted a chemical analysis of 10 flints using a technique called gas chromatography/mass spectrometry. The tests showed that the stone tools had been coated with resin from local pine trees. In one case, that resin had also been mixed with beeswax.

Villa explained that the Italian Neanderthals didn't just resort to their bare hands to use stone tools. In at least some cases, they also attached those tools to handles to give them better purchase as they sharpened wooden spears or performed other tasks like butchering or scraping leather.

"You need stone tools to cut branches off of trees and make them into a point," Villa said.

The find isn't the oldest known example of hafting by Neanderthals in Europe--two flakes discovered in the Campitello Quarry in central Italy predate it. But it does suggest that this technique was more common than previously believed.

The existence of hafting also provides more evidence that Neanderthals, like their smaller human relatives, were able to build a fire whenever they wanted one, Villa said--something that scientists have long debated. She said that pine resin dries when exposed to air. As a result, Neanderthals needed to warm it over a small fired to make an effective glue.

"This is one of several proofs that strongly indicate that Neanderthals were capable of making fire whenever they needed it," Villa said.

In other words, enjoying the glow of a warm campfire isn't just for Homo sapiens.

Other coauthors on the study included researchers at Paris Nanterre University in France, University of the Witwatersrand in South Africa, University of Wollongong in Australia, Max Planck Institute for the Science of Human History in Germany, Istituto Italiano di Paleontologia Umana and the University of Pisa.

The research was funded by a National Science Foundation grant to Paola Villa and Sylvain Soriano.

 

Press release from the University of Colorado at Boulder.


Dramatic change in ancient nomad diets coincides with expansion of networks across Eurasia

Dramatic change in ancient nomad diets coincides with expansion of networks across Eurasia

nomad pastoralists diets
Map of millet and wheat/barley consumption over time: a) 1000-500 cal BC, b) 500-200 cal BC, and c) 200 BC-AD 400. Credit: Map of millet and wheat/barley consumption over time: a) 1000-500 cal BC, b) 500-200 cal BC, and c) 200 BC-AD 400

A meta-analysis of dietary information recorded in the bones of ancient animals and humans recovered from sites scattered across the Eurasian steppe, from the Caucasus region to Mongolia, demonstrates that pastoralists spread domesticated crops across the steppe through their trade and social networks. Researchers from Kiel University sifted through previously published stable isotopic data and applied new quantitative analyses that calibrate human dietary intake against environmental inputs. The results have allowed them to better isolate the timing of the incorporation of agricultural products into the diets of pastoral nomads and, crucially, link burgeoning socio-political networks to this dietary transformation.

Through a big data project that explored over a thousand stable isotope data points, researchers were able to find evidence for an early transition to agriculture - based on dietary intake across Eurasia. "Our understanding of the pace of crop transmission across the Eurasian steppe has been surprisingly unclear due in part to a focus on the excavation of cemeteries, rather than settlements where people threw out their food," says Alicia Ventresca Miller, lead author, formerly of Kiel University and currently at the Max Planck Institute for the Science of Human History. "Even when settlement sites are excavated, the preservation of carbonized seed remains is often poor. This is what makes stable isotope analyses of human remains from this region so valuable - it provides direct insights into the dietary dynamics of ancient pastoralists who inhabited diverse environments."

Millet spreads across the Eurasian steppe

Millet, originally domesticated in China, appears to have been occasionally consumed at low levels by pastoralists inhabiting the far-flung regions of Siberia and southeastern Kazakhstan, possibly as early as the late third millennium. This initial uptake of millet coincided with the expansion of trans-regional networks across the steppe, when objects and ideas were first regularly exchanged over long-distances.

However, it was not until a thousand years later that millet became a regular feature of pastoralist diets. This timing coincides with the intensification of complex political structures at the transition to the Iron Age. Burgeoning socio-political confederations drove a marked increase in the exchange of costly prestige goods, which strengthened political networks - and facilitated the transfer of cultigens.

Wheat and Barley in the Trans-Urals

Despite taking part in these political networks, groups in the Trans-Urals invested in wheat and barley farming rather than millet. A dietary focus on wheat and barley may have been due to different farming techniques, greater water availability, or a higher value on these cultigens. "Our research suggests that cultigens were converted from a rare luxury during the Bronze Age to a medium demarcating elite participation in political networks during the Iron Age," states Cheryl Makarewicz of Kiel University.

Regional variation in millet consumption

While herding of livestock was widespread, not all regions adopted millet. In southwest Siberia, dietary intake was focused on pastoral animal products and locally available wild plants and fish. In contrast, the delayed adoption of millet by populations in Mongolia during the Late Iron Age coincides with the rise of the Xiongnu nomadic empire. "This is particularly interesting because it suggests that communities in Mongolia and Siberia opted out of the transition to millet agriculture, while continuing to engage with neighboring groups," explains Ventresca Miller.

This study shows the great potential of using the available isotope record to provide evidence for human dietary intake in areas where paleobotany is understudied. Further research should clarify the exact type of grains, for example broomcorn or foxtail millet, were fundamental to the shift in dietary intake and how networks of exchange linked different regions.

###

Original publication:

Ventresca Miller and Makarewicz, Intensification in pastoralist cereal use coincides with the expansion of trans-regional networks in the Eurasian Steppe, Scientific Reports (2019). DOI: https://doi.org/10.1038/s41598-018-35758-w

 

Press release from Kiel University / Christian-Albrechts-Universität zu Kiel


Details of first historically recorded plague pandemic revealed by ancient genomes

Details of first historically recorded plague pandemic revealed by ancient genomes

Analysis of 8 new plague genomes from the first plague pandemic reveals previously unknown levels of plague diversity, and provides the first genetic evidence of the Justinianic Plague in the British Isles

Justinianic Plague Yersinia pestis
Map and phylogenetic tree showing the newly published (yellow) and previously published (turquoise) genomes. Shaded areas and dots represent historically recorded outbreaks of the First Pandemic. Credit: Marcel Keller

An international team of researchers has analyzed human remains from 21 archaeological sites to learn more about the impact and evolution of the plague-causing bacterium Yersinia pestis during the first plague pandemic (541-750 AD). In a study published in PNAS, the researchers reconstructed 8 plague genomes from Britain, Germany, France and Spain and uncovered a previously unknown level of diversity in Y. pestis strains. Additionally, they found the first direct genetic evidence of the Justinianic Plague in the British Isles.

The Justinianic Plague began in 541 in the Eastern Roman Empire, ruled at the time by the Emperor Justinian I, and recurrent outbreaks ravaged Europe and the Mediterranean basin for approximately 200 years. Contemporaneous records describe the extent of the pandemic, estimated to have wiped out up to 25% of the population of the Roman world at the time. Recent genetic studies revealed that the bacterium Yersinia pestis was the cause of the disease, but how it had spread and how the strains that appeared over the course of the pandemic were related to each other was previously unknown.

In the current study, an international team of researchers led by the Max Planck Institute for the Science of Human History analyzed human remains from 21 sites with multiple burials in Austria, Britain, Germany, France and Spain. They were able to reconstruct 8 new Y. pestis genomes, allowing them to compare these strains to previously published ancient and modern genomes. Additionally, the team found the earliest genetic evidence of plague in Britain, from the Anglo-Saxon site of Edix Hill. By using a combination of archaeological dating and the position of this strain of Y. pestis in its evolutionary tree, the researchers concluded that the genome is likely related to an ambiguously described pestilence in the British Isles in 544 AD.

High diversity of Y. pestis strains during the First Pandemic

The researchers found that there was a previously unknown diversity of strains of Y. pestis circulating in Europe between the 6th and 8th centuries AD. The 8 new genomes came from Britain, France, Germany and Spain. "The retrieval of genomes that span a wide geographic and temporal scope gives us the opportunity to assess Y. pestis' microdiversity present in Europe during the First Pandemic," explains co-first author Marcel Keller, PhD student at the Max Planck Institute for the Science of Human History, now working at the University of Tartu. The newly discovered genomes revealed that there were multiple, closely related strains of Y. pestis circulating during the 200 years of the First Pandemic, some possibly at the same times and in the same regions.

Despite the greatly increased number of genomes now available, the researchers were not able to clarify the onset of the Justinianic Plague. "The lineage likely emerged in Central Asia several hundred years before the First Pandemic, but we interpret the current data as insufficient to resolve the origin of the Justinianic Plague as a human epidemic, before it was first reported in Egypt in 541 AD. However, the fact that all genomes belong to the same lineage is indicative of a persistence of plague in Europe or the Mediterranean basin over this time period, instead of multiple reintroductions."

Sampling of a tooth from a suspected plague burial. Credit: Evelyn Guevara

Possible evidence of convergent evolution in strains from two independent historical pandemics

Another interesting finding of the study was that plague genomes appearing towards the end of the First Pandemic showed a big deletion in their genetic code that included two virulence factors. Plague genomes from the late stages of the Second Pandemic some 800-1000 years later show a similar deletion covering the same region of the genomes. "This is a possible example of convergent evolution, meaning that these Y. pestis strains independently evolved similar characteristics. Such changes may reflect an adaptation to a distinct ecological niche in Western Eurasia where the plague was circulating during both pandemics," explains co-first author Maria Spyrou of the Max Planck Institute for the Science of Human History.

The current study offers new insights into the first historically documented plague pandemic, and provides additional clues alongside historical, archaeological, and palaeoepidemiological evidence, helping to answer outstanding questions. "This study shows the potential of palaeogenomic research for understanding historical and modern pandemics by comparing genomes across millennia," explains senior author Johannes Krause of the Max Planck Institute for the Science of Human History. "With more extensive sampling of possible plague burials, we hope to contribute to the understanding of Y. pestis' microevolution and its impact on humans during the course of past and present pandemics."

Lunel-Viel (Languedoc-Southern France). Victim of the plague thrown into a demolition trench of a Gallo-Roman house; end of the 6th-early 7th century. Credit: 1990; CNRS - Claude Raynaud

Press release from the Max Planck Institute for the Science of Human History / Max-Planck-Instituts für Menschheitsgeschichte


Unexpected potential paths for the spread of Homo Sapiens across Asia in Late Pleistocene

Humans used northern migration routes to reach eastern Asia

New article suggests wetter climates may have allowed Homo sapiens to expand across the deserts of Central Asia by 50-30,000 years ago

 

Northern and Central Asia have been neglected in studies of early human migration, with deserts and mountains being considered uncompromising barriers. However, a new study by an international team argues that humans may have moved through these extreme settings in the past under wetter conditions. We must now reconsider where we look for the earliest traces of our species in northern Asia, as well as the zones of potential interaction with other hominins such as Neanderthals and Denisovans.

Archaeologists and palaeoanthropologists are increasingly interested in discovering the environments facing the earliest members of our species, Homo sapiens, as it moved into new parts of Eurasia in the Late Pleistocene (125,000-12,000 years ago). Much attention has focused on a 'southern' route around the Indian Ocean, with Northern and Central Asia being somewhat neglected. However, in a paper published in PLOS ONE, scientists of the Max Planck Institute for the History of Human Science in Jena, Germany, and colleagues at the Institute of Vertebrate Paleontology and Paleoanthropology in Beijing, China, argue that climate change may have made this a particularly dynamic region of hominin dispersal, interaction, and adaptation, and a crucial corridor for movement.

'Heading North' Out of Africa and into Asia

"Archaeological discussions of the migration routes of Pleistocene Homo sapiens have often focused on a 'coastal' route from Africa to Australia, skirting around India and Southeast Asia," says Professor Michael Petraglia of the Max Planck Institute for the Science of Human History, a co-author of the new study. "In the context of northern Asia, a route into Siberia has been preferred, avoiding deserts such as the Gobi." Yet over the past ten years, a variety of evidence has emerged that has suggested that areas considered inhospitable today might not have always been so in the past.

"Our previous work in Saudi Arabia, and work in the Thar Desert of India, has been key in highlighting that survey work in previously neglected regions can yield new insights into human routes and adaptations," says Petraglia. Indeed, if Homo sapiens could cross what is now the Arabian Deserts then what would have stopped it crossing other currently arid regions such as the Gobi Desert, the Junggar Basin, and the Taklamakan Desert at different points in the past? Similarly, the Altai Mountains, the Tien Shan and the Tibetan Plateau represent a potentially new high altitude window into human evolution, especially given the recent Denisovan findings from Denisova Cave in Russia and at the Baishiya Karst Cave in China.

Nevertheless, traditional research areas, a density of archaeological sites, and assumptions about the persistence of environmental 'extremes' in the past has led to a focus on Siberia, rather than the potential for interior routes of human movement across northern Asia.

A "Green Gobi"?

The sand dunes of Mongol Els jutting out of the steppe in Mongolia. Many of these desert barriers only appeared after the Last Glacial Maximum (~20,000 years ago). Credit: Nils Vanwezer

Indeed, palaeoclimatic research in Central Asia has increasingly accumulated evidence of past lake extents, past records of changing precipitation amounts, and changing glacial extents in mountain regions, which suggest that environments could have varied dramatically in this part of the world over the course of the Pleistocene. However, the dating of many of these environmental transitions has remained broad in scale, and these records have not yet been incorporated into archaeological discussions of human arrival in northern and Central Asia.

"We factored in climate records and geographical features into GIS models for glacials (periods during which the polar ice caps were at their greatest extent) and interstadials (periods during the retreat of these ice caps) to test whether the direction of past human movement would vary, based on the presence of these environmental barriers," says Nils Vanwezer, PhD student at the Max Planck Institute for the Science of Human History and a joint lead-author of the study.

"We found that while during 'glacial' conditions humans would indeed likely have been forced to travel via a northern arc through southern Siberia, during wetter conditions a number of alternative pathways would have been possible, including across a 'green' Gobi Desert," he continues. Comparisons with the available palaeoenvironmental records confirm that local and regional conditions would have been very different in these parts of Asia in the past, making these 'route' models a definite possibility for human movement.

Where did you come from, where did you go?

Ancient lake landforms around Biger Nuur, Mongolia, which is evidence of larger lake sizes in the past. Credit: Nils Vanwezer

"We should emphasize that these routes are not 'real', definite pathways of Pleistocene human movement. However, they do suggest that we should look for human presence, migration, and interaction with other hominins in new parts of Asia that have been neglected as static voids of archaeology," says Dr. Patrick Roberts also of the Max Planck Institute for the Science of Human History, co-author of the study. "Given what we are increasingly discovering about the flexibility of our species, it would be of no surprise if we were to find early Homo sapiens in the middle of modern deserts or mountainous glacial sheets."

"These models will stimulate new survey and fieldwork in previously forgotten regions of northern and Central Asia," says Professor Nicole Boivin, Director of the Department of Archaeology at the Max Planck Institute for the Science of Human History, and co-author of the study. "Our next task is to undertake this work, which we will be doing in the next few years with an aim to test these new potential models of human arrival in these parts of Asia."

 

Press release from the Max Planck Institute for the Science of Human History / Max-Planck-Instituts für Menschheitsgeschichte

 

Homo sapiens may have had several routes of dispersal across Asia in the Late Pleistocene

A new model identifies unexpected potential paths for the spread of human culture and technology

Eastern Asia Central Homo Sapiens migrations
Illustrated dispersal routes from the results of the Least Cost Path analysis: The three routes from the "wet" simulations and the single route from the "dry" simulation are presented together in conjunction with palaeoclimatic extents (glaciers and palaeolakes). Sites: 4. Obi-Rakhmat, 5. Shugnou, 8. Denisova, 9. Ust-Karakol, 10. Kara-Tenesh, 11. Kara-Bom, 12. Luotuoshi, 14. Gouxi, 15. Lenghu 1, 17. Chikhen Agui, 18. Tsagaan Agui, 19. Tolbor 4, 20. Kharganyn Gol 5, 21. Orkhon 1 & 7, 22. Makarovo 4, 23. Kandabaevo, 24. Varvarina Gora, 25. Tolbaga, 27. Shuidonggou 1, 28. Shuidonggou 9, 42. Yushuwan, 70. Shibazhan (75075). I. 'Altai' Route, II. 'Tian Shan' Route, III. 'Tarim' Route, IV. "Revised Overland' Route. Base map raster is from naturalearthdata.com. Credit: Li et al, 2019

Homo sapiens may have had a variety of routes to choose from while dispersing across Asia during the Late Pleistocene Epoch, according to a study released May 29, 2019 in the open-access journal PLOS ONE by Feng Li of the Institute of Vertebrate Paleontology and Paleoanthropology in Beijing and colleagues.

After leaving Africa, Homo sapiens dispersed across the Asian continent during the Late Pleistocene, but it isn't known exactly what routes our species followed. Most models assume that the Gobi Desert and Altai Mountain chains of North and Central Asia formed impassable barriers on the way to the east, so archaeological exploration has tended to neglect those regions in favor of seemingly more likely paths farther north and south.

In this study, Li and colleagues use Geographic Information Systems (GIS) software alongside archaeological and paleoclimate data to reconstruct the conditions of North and Central Asia over the Late Pleistocene and to identify possible routes of travel. Their data suggest that the desert and mountain regions were likely impassable during cold and dry glacial periods, but that during warmer and wetter interglacial times it would have been possible for human populations to traverse these regions via at least three routes following ancient lake and river systems.

The authors caution that these data do not demonstrate definite routes of dispersal and that more detailed models should be constructed to test these results. However, these models do identify specific routes that may be good candidates for future archaeological exploration. Understanding the timing and tempo of Homo sapiens dispersal across Asia will be crucial for determining how culture and technology spread and developed, as well as how our species interacted with our extinct cousins, the Neanderthals and Denisovans.

Roberts adds: "Our modelling of the available geographic and past climate data suggest that archaeologists and anthropologists should look for early human presence, migration, and interaction with other hominins in new parts of Asia that have been neglected as static voids. Given what we are increasingly discovering about the flexibility of our species, it would be of no surprise if we were to find early Homo sapiens in the middle of modern deserts or mountainous glacial sheets all across Asia. Indeed, it may be here that the key to our species' uniqueness lies".

###

Citation: Li F, Vanwezer N, Boivin N, Gao X, Ott F, Petraglia M, et al. (2019) Heading north: Late Pleistocene environments and human dispersals in central and eastern Asia. PLoS ONE 14(5): e0216433. https://doi.org/10.1371/journal.pone.0216433

Funding: This study was funded by Max-Planck-Gesellschaft (DE) to Nicole Boivin, Strategic Priority Research Program of Chinese Academy of Sciences grant XDB26000000 to Feng Li, and Youth Innovation Promotion Association of the Chinese Academy of Sciences grant 2017102 to Feng Li. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

 

Press release from the Public Library of Sciences