Neanderthals glue stone tools

Neanderthals used resin 'glue' to craft their stone tools

Neanderthals used resin 'glue' to craft their stone tools

Neanderthals glue stone tools
Artist's rendition of Earth approximately 60,000 years ago. Picture from nasa.gov

Archaeologists working in two Italian caves have discovered some of the earliest known examples of ancient humans using an adhesive on their stone tools--an important technological advance called "hafting."

The new study, which included CU Boulder's Paola Villa, shows that Neanderthals living in Europe from about 55 to 40 thousand years ago traveled away from their caves to collect resin from pine trees. They then used that sticky substance to glue stone tools to handles made out of wood or bone.

The findings add to a growing body of evidence that suggests that these cousins of Homo sapiens were more clever than some have made them out to be.

"We continue to find evidence that the Neanderthals were not inferior primitives but were quite capable of doing things that have traditionally only been attributed to modern humans," said Villa, corresponding author of the new study and an adjoint curator at the CU Museum of Natural History.

Neanderthals glue stone tools
Flints bearing traces of pine resin. The letter "R" indicates the presence of visible resin, and the arrows point to spots where researchers sampled material for chemical analysis. (Credit: Degano et al. 2019, PLOS ONE)

That insight, she added, came from a chance discovery from Grotta del Fossellone and Grotta di Sant'Agostino, a pair of caves near the beaches of what is now Italy's west coast.

Those caves were home to Neanderthals who lived in Europe during the Middle Paleolithic period, thousands of years before Homo sapiens set foot on the continent. Archaeologists have uncovered more than 1,000 stone tools from the two sites, including pieces of flint that measured not much more than an inch or two from end to end.

In a recent study of the tools, Villa and her colleagues noticed a strange residue on just a handful of the flints--bits of what appeared to be organic material.

"Sometimes that material is just inorganic sediment, and sometimes it's the traces of the adhesive used to keep the tool in its socket" Villa said.

Warm fires

To find out, study lead author Ilaria Degano at the University of Pisa conducted a chemical analysis of 10 flints using a technique called gas chromatography/mass spectrometry. The tests showed that the stone tools had been coated with resin from local pine trees. In one case, that resin had also been mixed with beeswax.

Villa explained that the Italian Neanderthals didn't just resort to their bare hands to use stone tools. In at least some cases, they also attached those tools to handles to give them better purchase as they sharpened wooden spears or performed other tasks like butchering or scraping leather.

"You need stone tools to cut branches off of trees and make them into a point," Villa said.

The find isn't the oldest known example of hafting by Neanderthals in Europe--two flakes discovered in the Campitello Quarry in central Italy predate it. But it does suggest that this technique was more common than previously believed.

The existence of hafting also provides more evidence that Neanderthals, like their smaller human relatives, were able to build a fire whenever they wanted one, Villa said--something that scientists have long debated. She said that pine resin dries when exposed to air. As a result, Neanderthals needed to warm it over a small fired to make an effective glue.

"This is one of several proofs that strongly indicate that Neanderthals were capable of making fire whenever they needed it," Villa said.

In other words, enjoying the glow of a warm campfire isn't just for Homo sapiens.

Other coauthors on the study included researchers at Paris Nanterre University in France, University of the Witwatersrand in South Africa, University of Wollongong in Australia, Max Planck Institute for the Science of Human History in Germany, Istituto Italiano di Paleontologia Umana and the University of Pisa.

The research was funded by a National Science Foundation grant to Paola Villa and Sylvain Soriano.

 

Press release from the University of Colorado at Boulder.


Oldest flaked stone tools point to the repeated invention of stone tools

Oldest flaked stone tools point to the repeated invention of stone tools

stone tools
A large green artifact found in situ at the Bokol Dora site. Right: Image of the same artifact and a three dimensional model of the same artifact. Credit: David R. Braun

A new archaeological site discovered by an international and local team of scientists working in Ethiopia shows that the origins of stone tool production are older than 2.58 million years ago. Previously, the oldest evidence for systematic stone tool production and use was 2.58 to 2.55 million years ago.

Analysis by the researchers of early stone age sites, published this week in the Proceedings of the National Academy of Sciences, suggests that stone tools may have been invented many times in many ways before becoming an essential part of the human lineage.

The excavation site, known as Bokol Dora 1 or BD 1, is close to the 2013 discovery of the oldest fossil attributed to our genus Homo discovered at Ledi-Geraru in the Afar region of northeastern Ethiopia. The fossil, a jaw bone, dates to about 2.78 million years ago, some 200,000 years before the then oldest flaked stone tools. The Ledi-Geraru team has been working for the last five years to find out if there is a connection between the origins of our genus and the origins of systematic stone tool manufacture.

A significant step forward in this search was uncovered when Arizona State University geologist Christopher Campisano saw sharp-edged stone tools sticking out of the sediments on a steep, eroded slope.

Archaeologists from the Max Planck Institute, and the Ethiopian Authority for Research and the Conservation of Cultural Heritage as well as geologists from University of Algarve study the sediments at the Bokol Dora site. Stones were placed on the contact surface during the excavation to preserve the fragile stratigraphic contacts. Credit: Erin DiMaggio

"At first we found several artifacts lying on the surface, but we didn't know what sediments they were coming from," says Campisano. "But when I peered over the edge of a small cliff, I saw rocks sticking out from the mudstone face. I scaled up from the bottom using my rock hammer and found two nice stone tools starting to weather out."

It took several years to excavate through meters of sediments by hand before exposing an archaeological layer of animal bones and hundreds of small pieces of chipped stone representing the earliest evidence of our direct ancestors making and using stone knives. The site records a wealth of information about how and when humans began to use stone tools.

Preservation of the artifacts comes from originally being buried close to a water source.

"Looking at the sediments under a microscope, we could see that the site was exposed only for a very short time. These tools were dropped by early humans at the edge of a water source and then quickly buried. The site then stayed that way for millions of years," noted geoarchaeologist Vera Aldeias of the Interdisciplinary Center for Archaeology and Behavioral Evolution at the University of Algarve, Portugal.

Kaye Reed, who studies the site's ecology, is director of the Ledi-Geraru Research Project and a research associate with Arizona State University's Institute of Human Origins along with Campisano, notes that the animals found with these tools were similar to those found only a few kilometers away with the earliest Homo fossils.

Blade Engda of the University of Poitiers lifts an artifact from 2.6 million year old sediment exposing an imprint of the artifact on the ancient surface below. Credit: David R. Braun

"The early humans that made these stone tools lived in a totally different habitat than 'Lucy' did," says Reed. "Lucy" is the nickname for an older species of hominin known as Australopithecus afarensis, which was discovered at the site of Hadar, Ethiopia, about 45 kilometers southwest of the new BD 1 site. "The habitat changed from one of shrubland with occasional trees and riverine forests to open grasslands with few trees. Even the fossil giraffes were eating grass!"

In addition to dating a volcanic ash several meters below the site, project geologists analyzed the magnetic signature of the site's sediments. Over the Earth's history, its magnetic polarity has reversed at intervals that can be identified. Other earlier archaeological sites near the age of BD 1 are in "reversed" polarity sediments. The BD 1 site is in "normal" polarity sediments. The reversal from "normal" to "reversed" happened at about 2.58 million years ago, geologists knew that BD 1 was older than all the previously known sites.

The recent discovery of older hammering or "percussive" stone tools in Kenya dated to 3.3 million years ago, described as "Lomekwian," and butchered bones in Ethiopia shows the deep history of our ancestors making and using tools. However, recent discoveries of tools made by chimpanzees and monkeys have challenged "technological ape" ideas of human origins.

Archaeologists working at the BD 1 site wondered how their new stone tool discovery fit into this increasingly complex picture. What they found was that not only were these new tools the oldest artifacts yet ascribed to the "Oldowan," a technology originally named after finds from Olduvai Gorge in Tanzania, but also were distinct from tools made by chimpanzees, monkeys or even earlier human ancestors.

"We expected to see some indication of an evolution from the Lomekwian to these earliest Oldowan tools. Yet when we looked closely at the patterns, there was very little connection to what is known from older archaeological sites or to the tools modern primates are making," said Will Archer of the Max Planck Institute for Evolutionary Anthropology in Leipzig and the University of Cape Town.

The major differences appear to be the ability for our ancestors to systematically chip off smaller sharp-edged tools from larger nodules of stone. Chimpanzees and monkeys generally use tools for percussive activities, to hammer and bash food items like nuts and shellfish, which seems to have been the case with the 3.3 million year old Lomekwian tools as well.

Something changed by 2.6 million years ago, and our ancestors became more accurate and skilled at striking the edge of stones to make tools. The BD 1 artifacts captures this shift.

It appears that this shift in tool making occurred around the same time that our ancestor's teeth began to change. This can be seen in the Homo jaw from Ledi-Geraru. As our ancestors began to process food prior to eating using using stone tools, we start to see a reduction in the size of their teeth. Our technology and biology were intimately intertwined even as early as 2.6 million years ago.

The lack of clear connections with earlier stone tool technology suggests that tool use was invented multiple times in the past.

David Braun, an archaeologist with George Washington University and the lead author on the paper, noted, "Given that primate species throughout the world routinely use stone hammers to forage for new resources, it seems very possible that throughout Africa many different human ancestors found new ways of using stone artifacts to extract resources from their environment. If our hypothesis is correct then we would expect to find some type of continuity in artifact form after 2.6 million years ago, but not prior to this time period. We need to find more sites."

By 2.6 million years ago, there appears to be a long-term investment in tool use as part of the human condition.

Continued field investigations at the Ledi-Geraru project area are already producing more insights into the patterns of behavior in our earliest ancestors. New sites have already been found, and the Ledi-Geraru team will begin excavating them this year.

###

This research was supported by the United States National Science Foundation and the John Templeton Foundation.

This research, "Earliest known Oldowan artifacts at >2.58 Ma from Ledi-Geraru, Ethiopia, highlight early technological diversity," is published in the Proceedings of the National Academy of Sciences.

 

Press release from the Arizona State University


flint tools

Early humans deliberately recycled flint to create tiny, sharp tools

Early humans deliberately recycled flint to create tiny, sharp tools

Exceptional conditions at Israel's Qesem Cave preserved 400,000-year-old 'tool kit,' Tel Aviv University researchers say

flint tools
Experimental activity of cutting tubers with a small recycled flake and a close-up of its prehension (inset). Credit: Flavia Venditti/AFTAU

A new Tel Aviv University study finds that prehistoric humans "recycled" discarded or broken flint tools 400,000 years ago to create small, sharp utensils with specific functions. These recycled tools were then used with great precision and accuracy to perform specific tasks involved in the processing of animal products and vegetal materials.

The site of Qesem Cave, located just outside Tel Aviv, was discovered during a road construction project in 2000. It has since offered up countless insights into life in the region hundreds of thousands of years ago.

In collaboration with Prof. Cristina Lemorini of Sapienza University of Rome, the research was led jointly by postdoctoral fellow Dr. Flavia Venditti in collaboration with Profs. Ran Barkai and Avi Gopher. All three are members of TAU's Department of Archaeology and Ancient Near Eastern Cultures. It was published on April 11 in the Journal of Human Evolution.

In recent years, archaeologists working in caves in Spain and North Africa and digs in Italy and Israel have unearthed evidence that prehistoric people recycled objects they used in daily life. Just as we recycle materials such as paper and plastic to manufacture new items today, early hominids collected discarded or broken tools made of flint to create new utensils for specific purposes hundreds of thousands of years ago.

"Recycling was a way of life for these people," Prof. Barkai says. "It has long been a part of human evolution and culture. Now, for the first time, we are discovering the specific uses of the recycled 'tool kit' at Qesem Cave."

Exceptional conditions in the cave allowed for the immaculate preservation of the materials, including micro residue on the surface of the flint tools.

"We used microscopic and chemical analyses to discover that these small and sharp recycled tools were specifically produced to process animal resources like meat, hide, fat and bones," Venditti explains. "We also found evidence of plant and tuber processing, which demonstrated that they were also part of the hominids' diet and subsistence strategies."

According to the study, signs of use were found on the outer edges of the tiny objects, indicating targeted cutting activities related to the consumption of food: butchery activities and tuber, hide and bone processing. The researchers used two different and independent spectroscopic chemical techniques: Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX).

"The meticulous analysis we conducted allowed us to demonstrate that the small recycled flakes were used in tandem with other types of utensils. They therefore constituted a larger, more diversified tool kit in which each tool was designed for specific objectives," Venditti says.

She adds, "The research also demonstrates that the Qesem inhabitants practiced various activities in different parts of the cave: The fireplace and the area surrounding it were eventually a central area of activity devoted to the consumption of the hunted animal and collected vegetal resources, while the so-called 'shelf area' was used to process animal and vegetal materials to obtain different by-products."

"This research highlights two debated topics in the field of Paleolithic archaeology: the meaning of recycling and the functional role of small tools," Prof. Barkai observes. "The data from the unique, well-preserved and investigated Qesem Cave serve to enrich the discussion of these phenomena in the scientific community."

"Our data shows that lithic recycling at Qesem Cave was not occasional and not provoked by the scarcity of flint," Venditti concludes. "On the contrary, it was a conscious behavior which allowed early humans to quickly obtain tiny sharp tools to be used in tasks where precision and accuracy were essential."

The researchers are continuing to investigate prehistoric recycling by applying their analysis to other sites in Africa, Europe and Asia.

Read more


Earliest evidence of the cooking and eating of starch

Earliest evidence of the cooking and eating of starch

Early human beings who lived around 120,000 years ago in South Africa were 'ecological geniuses' who were able to exploit their environment intelligently for suitable food and medicines

starch Klasies River Cave South Africa
The Klasies River cave in the southern Cape of South Africa. Credit: Wits University

New discoveries made at the Klasies River Cave in South Africa's southern Cape, where charred food remains from hearths were found, provide the first archaeological evidence that anatomically modern humans were roasting and eating plant starches, such as those from tubers and rhizomes, as early as 120,000 years ago.

The new research by an international team of archaeologists, published in the Journal of Human Evolution, provides archaeological evidence that has previously been lacking to support the hypothesis that the duplication of the starch digestion genes is an adaptive response to an increased starch diet.

"This is very exciting. The genetic and biological evidence previously suggested that early humans would have been eating starches, but this research had not been done before," says Lead author Cynthia Larbey of the Department of Archaeology at the University of Cambridge. The work is part of a systemic multidisciplinary investigation into the role that plants and fire played in the lives of Middle Stone Age communities.

The interdisciplinary team searched for and analysed undisturbed hearths at the Klasies River archaeological site.

"Our results showed that these small ashy hearths were used for cooking food and starchy roots and tubers were clearly part of their diet, from the earliest levels at around 120,000 years ago through to 65,000 years ago," says Larbey. "Despite changes in hunting strategies and stone tool technologies, they were still cooking roots and tubers."

starch Klasies River Cave South Africa
Cynthia Larbey points to an area where parenchyma were found in 65,000 year old hearths at Klasies River Cave. Credit: Wits University

Professor Sarah Wurz from the School of Geography, Archaeology and Environmental Studies at the University of the Witwatersrand in Johannesburg, South Africa (Wits University) and principal investigator of the site says the research shows that "early human beings followed a balanced diet and that they were ecological geniuses, able to exploit their environments intelligently for suitable foods and perhaps medicines".

By combining cooked roots and tubers as a staple with protein and fats from shellfish, fish, small and large fauna, these communities were able to optimally adapt to their environment, indicating great ecological intelligence as early as 120 000 years ago.

"Starch diet isn't something that happens when we started farming, but rather, is as old as humans themselves," says Larbey. Farming in Africa only started in the last 10 000 years of human existence.

Humans living in South Africa 120 000 years ago formed and lived in small bands.

"Evidence from Klasies River, where several human skull fragments and two maxillary fragments dating 120 000 years ago occur, show that humans living in that time period looked like modern humans of today. However, they were somewhat more robust," says Wurz.

Klasies River is a very famous early human occupation site on the Cape coast of South Africa excavated by Wurz, who, along with Susan Mentzer of the Senckenberg Institute and Eberhard Karls Universität Tübingen, investigated the small (c. 30cm in diameter) hearths.

The research to look for the plant materials in the hearths was inspired by Prof Hilary Deacon, who passed on the Directorship of the Klasies River site on to Wurz. Deacon has done groundbreaking work at the site and in the 1990's pointed out that there would be plant material in and around the hearths. However, at the time, the micro methods were not available to test this hypothesis.

The Klasies River cave in the southern Cape of South Africa. Credit: Wits University

Press release from the University of the Witwatersrand


birch bark chewing gums

Chewing gums reveal the oldest Scandinavian human DNA

Chewing gums reveal the oldest Scandinavian human DNA

birch bark chewing gums
This is an excavation of the site in the 1990's. Credit: Per Persson/Stockholm University

The first humans who settled in Scandinavia more than 10,000 years ago left their DNA behind in ancient chewing gums, which are masticated lumps made from birch bark pitch. This is shown in a new study conducted at Stockholm University and published in Communications Biology.

There are few human bones of this age, close to 10 000 years old, in Scandinavia, and not all of them have preserved enough DNA for archaeogenetic studies. In fact, the DNA from these newly examined chewing gums is the oldest human DNA sequenced from this area so far. The DNA derived from three individuals, two females and one male, creates an exciting link between material culture and human genetics.

Ancient chewing gums are as of now an alternative source for human DNA and possibly a good proxy for human bones in archaeogenetic studies. The investigated pieces come from Huseby-Klev, an early Mesolithic hunter-fisher site on the Swedish west coast. The sites excavation was done in the early 1990's, but at this time it was not possible to analyse ancient human DNA at all, let alone from non-human tissue. The masticates were made out of birch bark tar and used as glue in tool production and other types of technology during the Stone Age.

"When Per Persson and Mikael Maininen proposed to look for hunter-gatherer DNA in these chewing gums from Huseby Klev we were hesitant but really impressed that archaeologists took care during the excavations and preserved such fragile material", says Natalija Kashuba, who was affiliated to The Museum of Cultural History in Oslo when she performed the experiments in cooperation with Stockholm University.

"It took some work before the results overwhelmed us, as we understood that we stumbled into this almost 'forensic research', sequencing DNA from these mastic lumps, which were spat out at the site some 10 000 years ago!" says Natalija Kashuba. Today Natalija is a Ph.D. student at Uppsala University.

Exciting link between material culture and human genetics

The results show that, genetically, the individuals whose DNA was found share close genetic affinity to other hunter-gatherers in Sweden and to early Mesolithic populations from Ice Age Europe. However, the tools produced at the site were a part of lithic technology brought to Scandinavia from the East European Plain, modern day Russia. This scenario of a culture and genetic influx into Scandinavia from two routes was proposed in earlier studies, and these ancient chewing gums provides an exciting link directly between the tools and materials used and human genetics.

Emrah Kirdök at Stockholm University conducted the computational analyses of the DNA. "Demography analysis suggests that the genetic composition of Huseby Klev individuals show more similarity to western hunter-gatherer populations than eastern hunter-gatherers", he says.

"DNA from these ancient chewing gums have an enormous potential not only for tracing the origin and movement of peoples long time ago, but also for providing insights in their social relations, diseases and food.", says Per Persson at the Museum of Cultural History in Oslo. "Much of our history is visible in the DNA we carry with us, so we try to look for DNA where ever we believe we can find it", says Anders Götherström, at the Archaeological Research Laboratory at Stockholm University, where the work was conducted. The study is published in Communications Biology.

birch bark chewing gums
This is a masticate being examined. Credit: Natalija Kashuba/Stockholm University

Press release from Stockholm University


Homo luzonensis Philippines Luzon Island Philip Piper

New species of early human found in the Philippines

New species of early human found in the Philippines

Professor Philip Piper from the ANU School of Archaeology and Anthropology. Credit: Lannon Harley, ANU

An international team of researchers have uncovered the remains of a new species of human in the Philippines, proving the region played a key role in hominin evolutionary history. The new species, Homo luzonensis is named after Luzon Island, where the more than 50,000 year old fossils were found during excavations at Callao Cave.

Co-author and a lead member of the team, Professor Philip Piper from The Australian National University (ANU) says the findings represent a major breakthrough in our understanding of human evolution across Southeast Asia.

The researchers uncovered the remains of at least two adults and one juvenile within the same archaeological deposits.

"The fossil remains included adult finger and toe bones, as well as teeth. We also recovered a child's femur. There are some really interesting features - for example, the teeth are really small," Professor Piper said.

"The size of the teeth generally, though not always, reflect the overall body-size of a mammal, so we think Homo luzonensis was probably relatively small. Exactly how small we don't know yet. We would need to find some skeletal elements from which we could measure body-size more precisely" Professor Piper said.

"It's quite incredible, the extremities, that is the hand and feet bones are remarkably Australopithecine-like. The Australopithecines last walked the earth in Africa about 2 million years ago and are considered to be the ancestors of the Homo group, which includes modern humans.

"So, the question is whether some of these features evolved as adaptations to island life, or whether they are anatomical traits passed down to Homo luzonensis from their ancestors over the preceding 2 million years."

While there are still plenty of questions around the origins of Homo luzonensis, and their longevity on the island of Luzon, recent excavations near Callao Cave produced evidence of a butchered rhinoceros and stone tools dating to around 700,000 years ago.

"No hominin fossils were recovered, but this does provide a timeframe for a hominin presence on Luzon. Whether it was Homo luzonensis butchering and eating the rhinoceros remains to be seen," Professor Piper said.

"It makes the whole region really significant. The Philippines is made up of a group of large islands that have been separated long enough to have potentially facilitated archipelago speciation. There is no reason why archaeological research in the Philippines couldn't discover several species of hominin. It's probably just a matter of time."

Homo luzonensis shares some unique skeletal features with the famous Homo floresiensis or 'the hobbit', discovered on the island of Flores to the south east of the Philippine archipelago.

In addition, stone tools dating to around 200,000 years ago have been found on the island of Sulawesi, meaning that ancient hominins potentially inhabited many of the large islands of Southeast Asia.

###

The project team was led by Dr Armand Mijares of the University of the Philippines, and includes Dr. Florent Détroit of the National Museum of Natural History in Paris and researchers from the University of Bordeaux, Paul Sabatier University and the University of Poitiers in France, as well as Griffith University in Australia.

The research has been published in the journal Nature.

 

Homo luzonensis Philippines Luzon Island Philip Piper
Professor Philip Piper from the ANU School of Archaeology and Anthropology inspects the cast of a hominin third metatarsal discovered in 2007. The bone is from a new species of hominin. Credit: Lannon Harley, ANU

Press release from the Australian National University.


From Stone Age chips to microchips: How tiny tools may have made us human

From Stone Age chips to microchips: How tiny tools may have made us human

The technology of miniaturization set hominins apart from other primates

The iconic, tear-drop shaped hand axe, which filled a human palm, required a large toolkit to produce (left), in contrast to a toolkit for tiny flakes. Credit: Emory University

Anthropologists have long made the case that tool-making is one of the key behaviors that separated our human ancestors from other primates. A new paper, however, argues that it was not tool-making that set hominins apart -- it was the miniaturization of tools.

Just as tiny transistors transformed telecommunications a few decades ago, and scientists are now challenged to make them even smaller, our Stone Age ancestors felt the urge to make tiny tools. "It's a need that we've been perennially faced with and driven by," says Justin Pargeter, an anthropologist at Emory University and lead author of the paper. "Miniaturization is the thing that we do."

Stone Age miniaturization stone tools prehistory
Going small may have helped some humans survive the last period of rapid climate change, 17,000 years ago, says Emory anthropologist Justin Pargeter. Credit: Emory University

The journal Evolutionary Anthropology is publishing the paper -- the first comprehensive overview of prehistoric tool miniaturization. It proposes that miniaturization is a central tendency in hominin technologies going back at least 2.6 million years.

"When other apes used stone tools, they chose to go big and stayed in the forests where they evolved," says co-author John Shea, professor of anthropology at Stony Brook University. "Hominins chose to go small, went everywhere, and transformed otherwise hostile habitats to suit our changing needs."

The paper reviews how stone flakes less than an inch in length -- used for piercing, cutting and scraping -- pop up in the archeological record at sites on every continent, going back to some of the earliest known stone tool assemblages. These small stone flakes, Pargeter says, were like the disposable razor blades or paperclips of today -- pervasive, easy to make and easily replaced.

He identifies three inflection points for miniaturization in hominin evolution. The first spike occurred around two million years ago, driven by our ancestors' increasing dependence on stone flakes in place of nails and teeth for cutting, slicing and piercing tasks. A second spike occurred sometime after 100,000 years ago with the development of high-speed weaponry, such as the bow and arrow, which required light-weight stone inserts. A third spike in miniaturization occurred about 17,000 years ago. The last Ice Age was ending, forcing some humans to adapt to rapid climate change, rising sea levels and increased population densities. These changes increased the need to conserve resources, including the rocks and minerals needed to make tools.

A native of South Africa, Pargeter co-directs field work in that country along its rugged and remote Indian Ocean coastline and nearby inland mountains. He is also a post-doctoral fellow in Emory University's Center for Mind, Brain and Culture and the Department of Anthropology's Paleolithic Technology Laboratory. The lab members actually make stone tools to better understand how our ancestors learned these skills, and how that process shaped our evolution. The lab's director, Dietrich Stout, focuses on hand axes, dating back more than 500,000 years. These larger tools are considered a turning point in human biological and cognitive evolution, due to the complexity involved in making them.

Pargeter's work on tiny tools adds another facet to the investigation of human evolution. "He's exploring what may have led to the compulsion to produce these tiny instruments -- essentially the relationship between the tools and the human body, brain and the probable uses of the tools," Stout says.

When looking for a PhD thesis topic, Pargeter first focused on collections of larger implements, considered typical of the Stone Age tool kit. He pored over artifacts from a South African site called Boomplaas that were being held in storage at the Iziko Museum in Cape Town. As he rummaged through a bag labelled as waste -- containing small flakes thought to be left over from making larger tools -- something caught his eye. A sliver of crystal quartz looked like it had been shaped using a highly technical method called pressure flaking.

"It was diminutive, about the size of a small raisin, and weighed less than half a penny," he recalls. "You could literally blow it off your finger."

Pargeter examined the flake under a magnifying glass. He noticed it had a distinctive, stair-step fracture on its tip that previous experimental research showed to be associated with damage caused in hunting.

"It suddenly occurred to me that archeologists may have missed a major component of our stone tool record," Pargeter says. "In our desire to make 'big' discoveries we may have overlooked tiny, but important, details. A whole technology could lay hidden behind our methods, relegated to bags considered waste material."

So how to interpret the use of a tool so tiny that you could easily blow it off your finger?

Pargeter began thinking of this question in terms of the age of the flake -- about 17,000 years -- and the environment at the time. The last Ice Age was ending and massive melting of ice at the poles caused the global sea-level to rise. In parts of South Africa, the rising oceans swallowed an area the size of Ireland. As the coastal marshes and grasslands disappeared -- along with much of the game and aquatic life -- the hunter-gatherers living there fled inland to sites like Boomplaas, currently located about 80 kilometers inland. The mountains around Boomplaas provided permanent springs and other dependable freshwater sources.

The climate, however, was less predictable, with sudden shifts in temperature and rainfall. Vegetation was shifting dramatically, temperatures were rising and large mammals were increasingly scarce. Archaeology from Boomplaas shows that people ate small game like hares and tortoises. These small animals would have been easy to catch, but they provided limited nutritional packages.

"These are low-reward food sources, indicating a foraging stress signal," Pargeter says. "Boomplaas might have even served as a type of refugee camp, with groups of hunter-gatherers moving away from the coast, trying to survive in marginal environments as resources rapidly depleted and climate change ratcheted up."

Arrow points a little less than an inch across were already in the archaeological literature, but the Boomplaas crystal quartz flake was half that size. In order to bring down an animal, Pargeter hypothesized, the Boomplaas flake would need poison on its tip -- derived either from plants or insects -- and a high-speed delivery system, such as a bow and arrow.

The tiny crystal flake, from a site in South Africa called Boomplaas, that sparked Justin Pargeter to investigate Stone Age miniaturization. Credit: Justin Pargeter

Pargeter used his own extensive knowledge of prehistoric tool-making and archaeology to hypothesize that the tiny flake could have been hafted, using a plant-based resin, onto a link shaft, also likely made of a plant-based material, such as a reed. That link shaft, about the length of a finger, would in turn fit onto a light arrow shaft.

"The link shaft goes into the animal, sacrificing the small blade, but the arrow shaft pops out so you can retain this more costly component," he says. "Our ancestors were masters of aerodynamics and acted like engineers, rather than what we think of as 'cave people.' They built redundancy into their technological systems, allowing them to easily repair their tools and to reduce the impact of errors."

Our ancestors were also connoisseurs of the type of fine-grained rocks needed for tool-making.

Supplies of such vital toolmaking raw materials, however, were likely diminished as the rising oceans consumed land and people became more crowded together, driving them to more carefully conserve what they could find on the landscape.

As paleoanthropologists are faced with more than three million years of hominin "stuff," one of the perennial questions they keep seeking to answer is, what makes us humans unique? "We've typically said that tool use makes us human, but that's kind of buckled under," Pargeter says, as evidence of tool use by other animals accumulates.

Macaques, for example, use rocks to smash apart oysters. Chimpanzees use rocks as hammers and anvils to crack nuts and they modify sticks to dig and fish for termites. These tools, however, are large. "The hands of other primates are not evolved for repeated fine manipulation in high-force tasks," Pargeter says. "We've evolved a unique precision grip that ratchets up our ability for miniaturized technology."

Humans are also the masters of dispersing into novel environments, unlike other primates that remained in the landscapes of their ancestors. "Smaller tools are the choice of technology for a mobile, dispersing population," Pargeter says. "When Homo sapiens left Africa they weren't carrying bulky hand axes, but bows and arrows and smaller stone implements."

 

Press release from Emory Health Sciences