Massive family trees give insight into the social behaviour of a Neolithic community
Using new methods for obtaining and analysing ancient DNA data, and by sampling nearly every individual from the flat cemetery, researchers from the PACEA laboratory in Bordeaux (France) and from the Max Planck Institute for Evolutionary Anthropology in Leipzig (Germany) reveal two massive family trees which open a window into the lives of the people of this prehistoric community.
Massive family trees
The study, published in Nature, analysed genome-wide ancient DNA data from 94 individuals buried at Gurgy, combined with strontium isotope ratio values, mitochondrial DNA (maternal lineages) and Y-chromosome (paternal lineages) data, age-at-death, and genetic sex. Two family trees could be reconstructed, the first connecting 64 individuals over 7 generations is the largest pedigree reconstructed from ancient DNA to date, while the second connects 12 individuals over 5 generations.
“Since the beginning of the excavation, we found evidence of a complete control of the funerary space and only very few overlapping burials, which felt like the site was managed by a group of closely related individuals, or at least by people who knew who was buried where”
Insights into the social structure of Gurgy
Exploring the pedigrees revealed a strong patrilineal pattern, where each generation is almost exclusively linked to the previous generation through the biological father, which connects the entire group of Gurgy through the paternal line.
At the same time, combined evidence from mitochondrial lineages and strontium stable isotope revealing a non-local origin of most women suggested the practice of patrilocality, meaning that the sons stayed where they were born, and had children with females from outside of Gurgy. Settling in with the male partner’s home community is known as virilocality. By contrast, most of the lineage adult daughters are missing, in line with female exogamy, potentially indicating a reciprocal exchange system. Interestingly, these “new incoming” female individuals were only very distantly related to each other, meaning that they must have come from a network of nearby communities, instead of just one nearby group. This lends support to the existence of a relatively wide and potentially fluid exchange network comprising many (including smaller) groups.
Looking at the family trees, Maïté Rivollat, first author of the study, is amazed:
“We observe a large number of full siblings who have reached reproductive age. Combined with the expected equal number of females and significant number of deceased infants, this indicates large family sizes, a high fertility rate and generally stable conditions of health and nutrition, which is quite striking for such ancient times.”
A founding ancestor
In the frame of this patrilocal system, one male individual from which everyone in the largest family tree was descended could be identified as the “founding father” of the cemetery. His burial is unique at the site, as his skeletal remains were buried as a secondary deposit inside the grave pit of a woman, for whom unfortunately no genomic data could be obtained. Therefore, his bones must have been brought from wherever he had originally died to be reburied at Gurgy.
“He must have represented a person of great significance for the founders of the Gurgy site to be brought there after a primary burial somewhere else,” explains Marie-France Deguilloux from the University of Bordeaux, co-senior author of the study.
These largest pedigrees reconstructed to date from ancient human DNA data, combined with multiple lines of evidence, represent an unprecedented step forward in our understanding of the social organization of past societies.
“Only with the major advances in our field in very recent years and the full integration of context data it was possible to carry out such an extraordinary study. It is a dream come true for every anthropologist and archaeologist and opens up a new avenue for the study of the ancient human past,” concludes Wolfgang Haak of the Max Planck Institute for Evolutionary Anthropology, senior author of the study.
Bibliographic information:
Extensive pedigrees reveal the social organisation of a Neolithic community
Authors: Maïté Rivollat, Adam Benjamin Rohrlach, Harald Ringbauer, Ainash Childebayeva, Fanny Mendisco, Rodrigo Barquera, András Szolek, Mélie Le Roy, Heidi Colleran, Jonathan Tuke, Franziska Aron, Marie-Hélène Pemonge, Ellen Späth, Philippe Télouk, Léonie Rey, Gwenaëlle Goude, Vincent Balter, Johannes Krause, Stéphane Rottier, Marie-France Deguilloux, Wolfgang Haak
Publication: Nature
DOI: https://doi.org/10.1038/s41586-023-06350-8
Press releases from the Max Planck Institute for Evolutionary Anthropology in Leipzig and Ghent University