molar size hominins

New study of molar size regulation in hominins

New study of molar size regulation in hominins

The Dental Anthropology Group at the CENIEH has tested the inhibitory cascade model to see whether it explains the size relationships and differences in shape between the different kinds of teeth, in the molar sample from the individuals identified at the Sima de los Huesos site in the Sierra de Atapuerca.
Mandíbula AT-1 de la Sima de los Huesos. Credits: Mario Modesto

The molar size relationship is one of the peculiar characteristics of the different species of hominins and various theories have been proposed to account for this, as well as the differences in shape between the different kinds of teeth (incisors, canines, premolars and molars). The latest theory, called the inhibitory cascade model, arose out of experiments with mice embryos, and in 2016 it was applied theoretically to fossil hominins, with satisfactory results.

It appeared that all hominins satisfy the inhibitory cascade model. In a paper by the Dental Anthropology Group at the Centro Nacional de Investigación sobre la evolución Humana (CENIEH), published recently in the Journal of Anatomy, this model was tested on the molar sample from the individuals identified at the Sima de los Huesos site, situated in the Sierra de Atapuerca (Burgos).

The results match the model generated in mice extraordinarily well, thus confirming the theory's utility once more. “Nevertheless, our conclusions have brought out an anomaly in the model, when it is applied to the oldest species of the genus Homo”, explains José María Bermúdez de Castro, Paleobiology Program Coordinator at the CENIEH and lead author of this work.

Increasing and decreasing patterns

In the genera Ardipithecus, Australopithecus and Paranthropus, as well as in Homo habilis, the size pattern is increasing and fits the premises of the inhibitory cascade model perfectly. The same thing happens in Homo sapiens, except that the pattern is decreasing, with the first molar larger than the second, which in turn is bigger than the third one (wisdom tooth).

Application of the inhibitory cascade model had led to the assumption that the switch from increasing to decreasing pattern would have arisen a little under two million years ago, perhaps coinciding with the transition between the genera Australopithecus and Homo. “However, in our work we noticed that this change could have required at least a million years to take place”, states Bermúdez de Castro.

The hominins from the Sima de los Huesos, which are around 430,000 years old, are a good example of that transition, whereas most specimens of Homo ergaster, Homo erectus, Homo antecessor and Homo heidelbergensis, as well as other species, do not fit the inhibitory cascade model. “Our idea is to continue our research to determine which genetic mechanisms lie behind this anomaly in the model”, says Bermúdez de Castro.

Full bibliographic information

Bermúdez de Castro et al. 2020. Testing the inhibitory cascade model in the Middle Pleistocene Sima de los Huesos (Sierra de Atapuerca, Spain) hominin sample. Journal of Anatomy. DOI: 10.1111/joa.13292
Press release from CENIEH.

The temporal lobes of Homo erectus were proportionally smaller than in H. sapiens

The temporal lobes of Homo erectus were proportionally smaller than in H. sapiens

The CENIEH has contributed to a paleoneurological study published in the journal Quaternary International, on the brain of Homo erectus, which analyzes its temporal lobes and compares these with other species like H. ergaster and H. sapiens
temporal lobes erectus sapiens ergaster
Pearson at al.

Emiliano Bruner, a paleoneurologist at the Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), has participated in a study published in the journal Quaternary International, on the anatomy of the temporal lobes in the brain of Homo erectus, which establishes that they were proportionally smaller than in modern humans.

In H. sapiens, the temporal lobes are relatively more highly developed than in other primates, although little is known about their anatomy in extinct human species, because they are housed in a very delicate region of the cranium known as the middle cranial fossa, which is often not conserved in fossil individuals.

An earlier study by the same team had shown that the size of the middle cranial fossa can be used to deduce the volume of the temporal lobes. In this new study, three anatomical diameters were analyzed in fossils of H. erectus and H. ergaster, and compared with the corresponding measurements for 51 modern humans. The results suggest that both fossil species had temporal lobes proportionally smaller than in humans today.

Moreover, “The Asiatic individuals, namely Homo erectus, had larger temporal lobes than in the African ones, Homo ergaster, although the scanty fossil record does not allow us to tell whether this is due to chance or a paleoneurological difference between the two species”, says Bruner.

As the temporal lobe is a brain region involved in the integration of many cognitive functions, such as memory, the emotions, hearing, social relations and language, any change in their sizes or proportions is of transcendent importance, as this could reveal variations in the development of their neurons or their connections, and therefore in the cognitive functions associated to this region of the cerebral cortex.

This study has been conducted by Alannah Pearson, a doctoral student of Emiliano Bruner at the Australian National University in Canberra (Australia), in collaboration with Professor David Polly, of Indiana University (USA).

 

Full bibliographic information

Pearson, A., Polly, P. D., & Bruner, E. (2020). Temporal lobe evolution in Javanese Homo erectus and African Homo ergaster: inferences from the cranial base. Quaternary International (0). doi: 10.1016/j.quaint.2020.07.048.

 

Press release from CENIEH