millets Mongolia

How millets sustained Mongolia's empires

How millets sustained Mongolia's empires

Stable isotope analyses reveals dramatic diet diversification at the onset of the steppe's earliest empires


The historic economies of Mongolia are among the least understood of any region in the world. The region's persistent, extreme winds whisk away signs of human activity and prevent the buildup of sediment which archaeologists rely on to preserve the past. Today crop cultivation comprises only a small percent of Mongolia's food production, and many scholars have argued that Mongolia presents a unique example of dense human populations and hierarchical political systems forming without intensive farming or stockpiling grains.

The current study, led by Dr. Shevan Wilkin of the Max Planck Institute for the Science of Human History provides, for the first time, a detailed glimpse into the diets and lives of ancient Mongolians, underscoring the importance of millets during the formation of the earliest empires on the steppe.

Isotopic analysis and the imperial importance of millets

millets Mongolia
Mongolian landscape with pastoral herd of sheep and goats. Credits: Alicia Ventresca Miller

Collaborating with archaeologists from the National University of Mongolia and the Institute of Archaeology in Ulaanbaatar, Dr. Wilkin and her colleagues from the MPI SHH sampled portions of teeth and rib bones from 137 previously excavated individuals. The skeletal fragments were brought back to the ancient isotope lab in Jena, Germany, where researchers extracted bone collagen and dental enamel to examine the ratios of stable nitrogen and carbon isotopes within. With these ratios in hand, scientists were able to reconstruct the diets of people who lived, ate, and died hundreds to thousands of years ago.

Researchers tracked the trends in diet through the millennia, creating a "dietscape" which clearly showed significant differences between the diets of Bronze Age peoples and those who lived during the Xiongnu and Mongol Empires. A typical Bronze Age Mongolian diet was based on milk and meat, and was likely supplemented with small amounts of naturally available plants. Later, during the Xiongnu Empire, human populations displayed a larger range of carbon values, showing that some people remained on the diet common in the Bronze Age, but that many others consumed a high amount of millet-based foods. Interestingly, those living near the imperial heartlands appear to have been consuming more millet-based foods than those further afield, which suggests imperial support for agricultural efforts in the more central political regions. The study also shows an increase in grain consumption and increasing dietary diversity through time, leading up to the well-known Mongolian Empire of the Khans.

Rethinking Mongolian prehistory

Horses are still used by many for transport across Mongolia. Credits: Shevan Wilkin

The new discoveries presented in this paper show that the development of the earliest empires in Mongolia, like in other parts of the world, was tied to a diverse economy that included the local or regional production of grain. Dr. Bryan K. Miller, a co-author who studies the historical and archaeological records of Inner Asian empires, remarks that "these regimes were like most empires, in that they directed intricate political networks and sought to amass a stable surplus - in this case a primarily pastoral one that was augmented by other resources like millet."

"In this regard," Dr. Miller adds, "this study brings us one step closer to understanding the cultural processes that led humanity into the modern world."

The view that everyone in Mongolian history was a nomadic herder has skewed discussions concerning social development in this part of the world. Dr. Wilkin notes that "setting aside our preconceived ideas of what prehistory looked like and examining the archaeological record with modern scientific approaches is forcing us to rewrite entire sections of humanity's past." Dr. Spengler, the director of the archaeobotany labs at the MPI SHH, emphasizes the importance of this discovery, noting that "this study pulls the veil of myth and lore off of the real people who lived in Mongolia millennia ago and lets us peak into their lives."

millets Mongolia
Cultivated land in northern Mongolia. Credits: Alicia Ventresca Miller


Publication information:

Title: Economic Diversification Supported the Growth of Mongolia's Nomadic Empires

Authors: Shevan Wilkin, Alicia Ventresca Miller, Bryan K. Miller, Robert N. Spengler, William T. T. Taylor, Ricardo Fernandes, Madeleine Bleasdale, Jana Zech, S. Ulziibayar, Erdene Myagmar, Nicole Boivin, Patrick Roberts

Publication: Scientific Reports

DOI: 10.1038/s41598-020-60194-0


Press release from the Max Planck Institute for the Science of Human History / DE

5,000-year-old milk proteins point to the importance of dairying in eastern Eurasia

5,000-year-old milk proteins point to the importance of dairying in eastern Eurasia

Recent findings push back estimates of dairying in the eastern Steppe by more than 1,700 years, pointing to migration as a potential means of introduction


Today dairy foods sustain and support millions around the world, including in Mongolia, where dairy foods make up to 50% of calories consumed during the summer. Although dairy-based pastoralism has been an essential part of life and culture in the eastern Eurasian Steppe for millennia, the eastward spread of dairying from its origin in southwest Asia and the development of these practices is little understood. The current study, led by Shevan Wilkin and Jessica Hendy of the Max Planck Institute for the Science of Human History, presents the earliest evidence for dairy consumption in East Asia, circa 3000 BCE, and offers insights into the arrival and evolution of dairy pastoralism in prehistoric Mongolia.

dairying Eurasia
These are horses on the steppe. Credits: Björn Reichhardt

Earliest dairy consumption & a possible path of entry

The highly mobile nature of pastoralist societies and the severe winds of the Eastern Steppe make detecting occupied sites with direct evidence into the lives and culture of ancient Mongolians exceedingly rare. Instead, the researchers looked for clues in ritual human burial mounds, often marked by stone monuments and occasionally featuring satellite animal graves.

In collaboration with the National University of Mongolia, researchers analyzed dental calculus from individuals ranging from the Early Bronze Age to the Mongol Period. Three-quarters of all individuals contained evidence that they had consumed dairy foods, which demonstrates the widespread importance of this food source in both prehistoric and historic Mongolia. The study's results include the earliest direct evidence for dairy consumption in East Asia, identified in an individual from the Afanasievo site of Shatar Chuluu, which dates to roughly 3000 BCE. Previous DNA analysis on this individual revealed non-local genetic markers consistent with Western Steppe Herder populations, presenting Early Bronze Age Afanasievo migrations westward via the Russian Altai as a viable candidate for the introduction of dairy and domestic livestock into eastern Eurasia.

Multiple different animal species were used for their milk

dairying Eurasia
These are sheep and goat herds in Mongolia. Credits: Björn Reichhardt

By sequencing the milk proteins extracted from the dental calculus, the scientists were able to determine which animal species were being used for dairy production, and thereby help to trace the progression of domestication, dairying, and pastoralism in the region. "Modern Mongolians use cow, sheep, goat, yak, camel, horse and reindeer for milk today, yet when each of these species were first utilized for dairy in Mongolia remains unclear," says Shevan Wilkin, lead author of the study. "What is clear is that the crucial renewable calories and hydration made available through the incorporation of dairying would have become essential across the arid and agriculturally challenging ancient Eastern Steppe."

The earliest individuals to show evidence of dairy consumption lived around 5000 years ago and consumed milk from ruminant species, such as cattle, sheep, and goats. A few thousand years later, at Bronze Age sites dated to after 1200 BCE, the researchers find the first evidence of horse milk consumption, occurring at the same time as early evidence for horse bridling and riding, as well as the use of horses at ritual burial sites. In addition, the study shows that during the Mongol Empire circa 1200-1400 CE, people also consumed the milk of camels. "We are excited that through the analysis of proteins we are able to see the consumption of multiple different animal species, even sometimes in the same individual. This gives us a whole new insight into ancient dairying practices" says Jessica Hendy, senior author of the study.

Millenia after the first evidence of horse milk consumption, horses remain vital to the daily lives of many in modern Mongolia, where mounted pastoralists rely on them to manage large herds of livestock, transport people and supplies, and provide a primary source of meat and milk. "Our findings suggest that the incorporation of horses into dairy pastoralism in Eastern Eurasia was closely linked to a broader economic transformation in the use of horses for riding, movement, and diet," says William Taylor of the University of Colorado-Boulder, one of the study's coauthors.

Although the earliest individual sampled in this study showed evidence of dairy consumption, the researchers hope future studies will examine individuals from previous time periods. "In order to form a clearer picture of the origins of dairying in this region, we need to understand the impact of western steppe herder migrations and confirm whether dairying was occurring in Mongolia prior to their arrival," Shevan Wilkin concludes.

dairying Eurasia
This is a horse burial at Morin Mort, Mongolia. Credits: William Taylor


Publication information:

Title: Dairy pastoralism sustained Eastern Eurasian steppe populations for 5000 years

Authors: Shevan Wilkin, Alicia Ventresca Miller, William T.T. Taylor, Bryan K. Miller, Richard W. Hagan, Madeleine Bleasdale, Ashley Scott, Sumiya Gankhuyg, Abigail Ramsoe, S. Uliziibayar, Christian Trachsel, Paolo Nanni, Jonas Grossmann, Ludovic Orlando, Mark Horton, Philipp W. Stockhammer, Erdene Myagmar, Nicole Boivin, Christina Warinner, Jessica Hendy

Publication: Nature Ecology & Evolution

DOI: 10.1038/s41559-020-1120-y


Press release from the Max Planck Institute for the Science of Human History / DE

Unexpected potential paths for the spread of Homo Sapiens across Asia in Late Pleistocene

Humans used northern migration routes to reach eastern Asia

New article suggests wetter climates may have allowed Homo sapiens to expand across the deserts of Central Asia by 50-30,000 years ago


Northern and Central Asia have been neglected in studies of early human migration, with deserts and mountains being considered uncompromising barriers. However, a new study by an international team argues that humans may have moved through these extreme settings in the past under wetter conditions. We must now reconsider where we look for the earliest traces of our species in northern Asia, as well as the zones of potential interaction with other hominins such as Neanderthals and Denisovans.

Archaeologists and palaeoanthropologists are increasingly interested in discovering the environments facing the earliest members of our species, Homo sapiens, as it moved into new parts of Eurasia in the Late Pleistocene (125,000-12,000 years ago). Much attention has focused on a 'southern' route around the Indian Ocean, with Northern and Central Asia being somewhat neglected. However, in a paper published in PLOS ONE, scientists of the Max Planck Institute for the History of Human Science in Jena, Germany, and colleagues at the Institute of Vertebrate Paleontology and Paleoanthropology in Beijing, China, argue that climate change may have made this a particularly dynamic region of hominin dispersal, interaction, and adaptation, and a crucial corridor for movement.

'Heading North' Out of Africa and into Asia

"Archaeological discussions of the migration routes of Pleistocene Homo sapiens have often focused on a 'coastal' route from Africa to Australia, skirting around India and Southeast Asia," says Professor Michael Petraglia of the Max Planck Institute for the Science of Human History, a co-author of the new study. "In the context of northern Asia, a route into Siberia has been preferred, avoiding deserts such as the Gobi." Yet over the past ten years, a variety of evidence has emerged that has suggested that areas considered inhospitable today might not have always been so in the past.

"Our previous work in Saudi Arabia, and work in the Thar Desert of India, has been key in highlighting that survey work in previously neglected regions can yield new insights into human routes and adaptations," says Petraglia. Indeed, if Homo sapiens could cross what is now the Arabian Deserts then what would have stopped it crossing other currently arid regions such as the Gobi Desert, the Junggar Basin, and the Taklamakan Desert at different points in the past? Similarly, the Altai Mountains, the Tien Shan and the Tibetan Plateau represent a potentially new high altitude window into human evolution, especially given the recent Denisovan findings from Denisova Cave in Russia and at the Baishiya Karst Cave in China.

Nevertheless, traditional research areas, a density of archaeological sites, and assumptions about the persistence of environmental 'extremes' in the past has led to a focus on Siberia, rather than the potential for interior routes of human movement across northern Asia.

A "Green Gobi"?

The sand dunes of Mongol Els jutting out of the steppe in Mongolia. Many of these desert barriers only appeared after the Last Glacial Maximum (~20,000 years ago). Credit: Nils Vanwezer

Indeed, palaeoclimatic research in Central Asia has increasingly accumulated evidence of past lake extents, past records of changing precipitation amounts, and changing glacial extents in mountain regions, which suggest that environments could have varied dramatically in this part of the world over the course of the Pleistocene. However, the dating of many of these environmental transitions has remained broad in scale, and these records have not yet been incorporated into archaeological discussions of human arrival in northern and Central Asia.

"We factored in climate records and geographical features into GIS models for glacials (periods during which the polar ice caps were at their greatest extent) and interstadials (periods during the retreat of these ice caps) to test whether the direction of past human movement would vary, based on the presence of these environmental barriers," says Nils Vanwezer, PhD student at the Max Planck Institute for the Science of Human History and a joint lead-author of the study.

"We found that while during 'glacial' conditions humans would indeed likely have been forced to travel via a northern arc through southern Siberia, during wetter conditions a number of alternative pathways would have been possible, including across a 'green' Gobi Desert," he continues. Comparisons with the available palaeoenvironmental records confirm that local and regional conditions would have been very different in these parts of Asia in the past, making these 'route' models a definite possibility for human movement.

Where did you come from, where did you go?

Ancient lake landforms around Biger Nuur, Mongolia, which is evidence of larger lake sizes in the past. Credit: Nils Vanwezer

"We should emphasize that these routes are not 'real', definite pathways of Pleistocene human movement. However, they do suggest that we should look for human presence, migration, and interaction with other hominins in new parts of Asia that have been neglected as static voids of archaeology," says Dr. Patrick Roberts also of the Max Planck Institute for the Science of Human History, co-author of the study. "Given what we are increasingly discovering about the flexibility of our species, it would be of no surprise if we were to find early Homo sapiens in the middle of modern deserts or mountainous glacial sheets."

"These models will stimulate new survey and fieldwork in previously forgotten regions of northern and Central Asia," says Professor Nicole Boivin, Director of the Department of Archaeology at the Max Planck Institute for the Science of Human History, and co-author of the study. "Our next task is to undertake this work, which we will be doing in the next few years with an aim to test these new potential models of human arrival in these parts of Asia."


Press release from the Max Planck Institute for the Science of Human History / Max-Planck-Instituts für Menschheitsgeschichte


Homo sapiens may have had several routes of dispersal across Asia in the Late Pleistocene

A new model identifies unexpected potential paths for the spread of human culture and technology

Eastern Asia Central Homo Sapiens migrations
Illustrated dispersal routes from the results of the Least Cost Path analysis: The three routes from the "wet" simulations and the single route from the "dry" simulation are presented together in conjunction with palaeoclimatic extents (glaciers and palaeolakes). Sites: 4. Obi-Rakhmat, 5. Shugnou, 8. Denisova, 9. Ust-Karakol, 10. Kara-Tenesh, 11. Kara-Bom, 12. Luotuoshi, 14. Gouxi, 15. Lenghu 1, 17. Chikhen Agui, 18. Tsagaan Agui, 19. Tolbor 4, 20. Kharganyn Gol 5, 21. Orkhon 1 & 7, 22. Makarovo 4, 23. Kandabaevo, 24. Varvarina Gora, 25. Tolbaga, 27. Shuidonggou 1, 28. Shuidonggou 9, 42. Yushuwan, 70. Shibazhan (75075). I. 'Altai' Route, II. 'Tian Shan' Route, III. 'Tarim' Route, IV. "Revised Overland' Route. Base map raster is from Credit: Li et al, 2019

Homo sapiens may have had a variety of routes to choose from while dispersing across Asia during the Late Pleistocene Epoch, according to a study released May 29, 2019 in the open-access journal PLOS ONE by Feng Li of the Institute of Vertebrate Paleontology and Paleoanthropology in Beijing and colleagues.

After leaving Africa, Homo sapiens dispersed across the Asian continent during the Late Pleistocene, but it isn't known exactly what routes our species followed. Most models assume that the Gobi Desert and Altai Mountain chains of North and Central Asia formed impassable barriers on the way to the east, so archaeological exploration has tended to neglect those regions in favor of seemingly more likely paths farther north and south.

In this study, Li and colleagues use Geographic Information Systems (GIS) software alongside archaeological and paleoclimate data to reconstruct the conditions of North and Central Asia over the Late Pleistocene and to identify possible routes of travel. Their data suggest that the desert and mountain regions were likely impassable during cold and dry glacial periods, but that during warmer and wetter interglacial times it would have been possible for human populations to traverse these regions via at least three routes following ancient lake and river systems.

The authors caution that these data do not demonstrate definite routes of dispersal and that more detailed models should be constructed to test these results. However, these models do identify specific routes that may be good candidates for future archaeological exploration. Understanding the timing and tempo of Homo sapiens dispersal across Asia will be crucial for determining how culture and technology spread and developed, as well as how our species interacted with our extinct cousins, the Neanderthals and Denisovans.

Roberts adds: "Our modelling of the available geographic and past climate data suggest that archaeologists and anthropologists should look for early human presence, migration, and interaction with other hominins in new parts of Asia that have been neglected as static voids. Given what we are increasingly discovering about the flexibility of our species, it would be of no surprise if we were to find early Homo sapiens in the middle of modern deserts or mountainous glacial sheets all across Asia. Indeed, it may be here that the key to our species' uniqueness lies".


Citation: Li F, Vanwezer N, Boivin N, Gao X, Ott F, Petraglia M, et al. (2019) Heading north: Late Pleistocene environments and human dispersals in central and eastern Asia. PLoS ONE 14(5): e0216433.

Funding: This study was funded by Max-Planck-Gesellschaft (DE) to Nicole Boivin, Strategic Priority Research Program of Chinese Academy of Sciences grant XDB26000000 to Feng Li, and Youth Innovation Promotion Association of the Chinese Academy of Sciences grant 2017102 to Feng Li. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.


Press release from the Public Library of Sciences