The temporal lobes of Homo erectus were proportionally smaller than in H. sapiens

The temporal lobes of Homo erectus were proportionally smaller than in H. sapiens

The CENIEH has contributed to a paleoneurological study published in the journal Quaternary International, on the brain of Homo erectus, which analyzes its temporal lobes and compares these with other species like H. ergaster and H. sapiens
temporal lobes erectus sapiens ergaster
Pearson at al.

Emiliano Bruner, a paleoneurologist at the Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), has participated in a study published in the journal Quaternary International, on the anatomy of the temporal lobes in the brain of Homo erectus, which establishes that they were proportionally smaller than in modern humans.

In H. sapiens, the temporal lobes are relatively more highly developed than in other primates, although little is known about their anatomy in extinct human species, because they are housed in a very delicate region of the cranium known as the middle cranial fossa, which is often not conserved in fossil individuals.

An earlier study by the same team had shown that the size of the middle cranial fossa can be used to deduce the volume of the temporal lobes. In this new study, three anatomical diameters were analyzed in fossils of H. erectus and H. ergaster, and compared with the corresponding measurements for 51 modern humans. The results suggest that both fossil species had temporal lobes proportionally smaller than in humans today.

Moreover, “The Asiatic individuals, namely Homo erectus, had larger temporal lobes than in the African ones, Homo ergaster, although the scanty fossil record does not allow us to tell whether this is due to chance or a paleoneurological difference between the two species”, says Bruner.

As the temporal lobe is a brain region involved in the integration of many cognitive functions, such as memory, the emotions, hearing, social relations and language, any change in their sizes or proportions is of transcendent importance, as this could reveal variations in the development of their neurons or their connections, and therefore in the cognitive functions associated to this region of the cerebral cortex.

This study has been conducted by Alannah Pearson, a doctoral student of Emiliano Bruner at the Australian National University in Canberra (Australia), in collaboration with Professor David Polly, of Indiana University (USA).


Full bibliographic information

Pearson, A., Polly, P. D., & Bruner, E. (2020). Temporal lobe evolution in Javanese Homo erectus and African Homo ergaster: inferences from the cranial base. Quaternary International (0). doi: 10.1016/j.quaint.2020.07.048.


Press release from CENIEH

brain fossils neuroanatomy

Brain, shape and fossils

Brain, shape and fossils

Emiliano Bruner has just published a paper on the shape of the brain over human evolution, which reviews the evolutionary relationship between humans and the other primates, as well as the most recent methods for comparing the principal variations between brain and cranium

brain fossils neuroanatomy
Credit: Emiliano Bruner

Emiliano Bruner, a paleoneurologist at the Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), has just published an overview article in the Journal of Comparative Neurology, on studies of changes in brain shape over the course of human evolution, which considers the evolutionary relationship between humans and the other primates.

Evolutionary neuroanatomy must integrate two different sources of information: fossils and living species. The fossils furnish data on the process of evolution, while living species do the same for the product of evolution. Unfortunately, the fossil record is incomplete and fragmented, and often cannot support validations for specific evolutionary hypotheses. Extant species can offer more comprehensive indications, but they do not represent ancestral groups or primitive forms.

Specifically, this paper reviews the limitations on studies of evolutionary neuroanatomy and the different contributions made by analyses of living primates and extinct hominins. For instance, the great apes are still interpreted as primitive biological models, even though these are species that have evolved independently of the path traced by the human genus. “Macaques or chimpanzees are frequently used as proxy for human ancestral conditions, despite the fact they are divergent and specialized lineages, with their own biological features”, says Bruner.

With regard to the fossils, these can furnish more direct information about the evolutionary process, but the limitations of the samples often do not allow scientific testing of our hypotheses, leading to a lot of guesswork. In fact, as Bruner explains, “independent lineages, such as the Neanderthals, ought not to be confused with ancestral modern human stages”.

Endocranial molds
The paper also introduces the most recent methods for computed morphometrics and biomedical image analysis, describing the principal variations in brains and endocranial molds (endocasts) for modern humans and extinct hominins, in addition to the spatial relationship between brain and cranium in the human genus.

Finally, it proposes integrating anatomical and cultural information with what is known in neurobiology when formulating hypotheses about cognitive evolution. One example would be the evolution of the parietal cortex and its schemes of cerebral connections.

This paper, entitled Human paleoneurology: shaping cortical evolution in fossil hominids, has been published in a volume dedicated to the evolution of the cerebral cortex, edited by Verónica Martínez-Cerdeño and Stephen Noctor, of the University of California at Davis (USA).


Full bibliographic information


"Human paleoneurology: shaping cortical evolution in fossil hominids", edited by Verónica Martínez-Cerdeño and Stephen Noctor Journal of Comparative Neurology (0). doi: 10.1002/cne.24591

Press release from the Centro Nacional de Investigación sobre la Evolución Humana (CENIEH) / ES