Cueva de los Toriles

Cueva de los Toriles site is dated to the Early-Middle Pleistocene by the presence of a primitive badger

Cueva de los Toriles site is dated to the Early-Middle Pleistocene by the presence of a primitive badger

The CENIEH has led a paper on this archaeological site located in Castilla-La Mancha (Spain), which makes clear its importance as one of the most significant enclaves with fossil remains from these chronologies in the southern Iberian plateau

Badger teeth. Credits: Daniel García Martínez

A team of researchers headed by Daniel Garcia Martínez, a paleoanthropologist at the Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), has just published a paper in the Journal of Iberian Geology on some remains of a primitive badger found in the Cueva de los Toriles (Carrizosa, Ciudad Real, Spain) which have allowed it to be dated to the Early-Middle Pleistocene: this archaeological site could potentially be a singular enclave with fossil remains from the southern Iberian plateau in these chronologies.

Even though there is currently no exact dating for the sedimentary deposits at this site in La Mancha, the finding of two lower molars of a mustelid, attributed to the species Meles cf. thorali, a primitive badger, has enabled their potential age to be checked, because this extinct mustelid is principally found in sites around 1 million years old.

As Alberto Valenciano, a specialist in mustelids from the University of Cape Town, explains: “In accordance with the presence of this badger species in the cave, we can tentatively assume an age ranging from the Late Pliocene up to the Middle Pleistocene”. In addition, as García Martínez comments: “These chronologies would be consistent with certain lithic tools recovered from the site”.

A natural corridor

Studying the southern Iberian plateau is primordial to revealing the population and movement of fauna in the Iberian Peninsula, because it functions as a natural corridor connecting the Central System and Iberian Range to the north with the Baetic Ranges to the south.

Cueva de los Toriles
Cueva de los Toriles site. Credits: Danie García Martínez

In the southern Iberian plateau, there are far fewer Pleistocene sites than in the northern plateau, where sites of world importance such as Atapuerca (Burgos) are found, because the eminently agricultural use of the land has caused many open-air sites to be altered or vanish.

“And while it is true that certain sites well-known to archaeologists are found in Ciudad Real, such as Albalá or El Sotillo, these are rich in lithic remains but poor in fossils, something which does not happen at Cueva de los Toriles where remains of macromammals have also been found, which could help to fill the gaps in our knowledge about this region”, states García Martínez.

“This cave is also an important site because of the enduring human presence stretching back to prehistory which we are seeing in our first investigations. A major milestone in the archaeology of Castilla-La Mancha and the southern sub-plateau", says Pedro R. Moya Maleno, from the Universidad Complutense de Madrid.

 

Full bibliographic information

 

García-Martínez, D., Valenciano, A., Suárez-Bilbao, A., Palancar, C. A., Megía García, I., Moreno, D., Campaña, I., & Moya-Maleno, P. R. (2020). New remains of a primitive badger from Cueva de los Toriles (Carrizosa, Castilla-La Mancha, Iberian Peninsula) suggest a new quaternary locality in the southern Iberian plateau. Journal of Iberian Geology (0). doi: 10.1007/s41513-020-00127-y

Press release from CENIEH


human face hominins evolution

Need for social skills helped shape modern human face

Need for social skills helped shape modern human face

The modern human face is distinctively different to that of our near relatives and now researchers believe its evolution may have been partly driven by our need for good social skills

This is professor Paul O'Higgins from the University of York. Credit: University of York

The modern human face is distinctively different to that of our near relatives and now researchers believe its evolution may have been partly driven by our need for good social skills.

As large-brained, short-faced hominins, our faces are different from other, now extinct hominins (such as the Neanderthals) and our closest living relatives (bonobos and chimpanzees), but how and why did the modern human face evolve this way?

A new review published in Nature Ecology and Evolution and authored by a team of international experts, including researchers from the University of York, traces changes in the evolution of the face from the early African hominins to the appearance of modern human anatomy.

They conclude that social communication has been somewhat overlooked as a factor underlying the modern human facial form. Our faces should be seen as the result of a combination of biomechanical, physiological and social influences, the authors of the study say.

The researchers suggest that our faces evolved not only due to factors such as diet and climate, but possibly also to provide more opportunities for gesture and nonverbal communication - vital skills for establishing the large social networks which are believed to have helped Homo sapiens to survive.

"We can now use our faces to signal more than 20 different categories of emotion via the contraction or relaxation of muscles", says Paul O'Higgins, Professor of Anatomy at the Hull York Medical School and the Department of Archaeology at the University of York. "It's unlikely that our early human ancestors had the same facial dexterity as the overall shape of the face and the positions of the muscles were different."

human face hominins evolution
These are skulls of hominins over the last 4.4 million years. Credit: Rodrigo Lacruz

Instead of the pronounced brow ridge of other hominins, humans developed a smooth forehead with more visible, hairy eyebrows capable of a greater range of movement. This, alongside our faces becoming more slender, allows us to express a wide range of subtle emotions - including recognition and sympathy.

"We know that other factors such as diet, respiratory physiology and climate have contributed to the shape of the modern human face, but to interpret its evolution solely in terms of these factors would be an oversimplification," Professor O'Higgins adds.

The human face has been partly shaped by the mechanical demands of feeding and over the past 100,000 years our faces have been getting smaller as our developing ability to cook and process food led to a reduced need for chewing.

This facial shrinking process has become particularly marked since the agricultural revolution, as we switched from being hunter gatherers to agriculturalists and then to living in cities - lifestyles that led to increasingly pre-processed foods and less physical effort.

"Softer modern diets and industrialised societies may mean that the human face continues to decrease in size", says Professor O'Higgins. "There are limits on how much the human face can change however, for example breathing requires a sufficiently large nasal cavity."

"However, within these limits, the evolution of the human face is likely to continue as long as our species survives, migrates and encounters new environmental, social and cultural conditions."

 

 

The Evolutionary History of the Human Face is published in Nature Ecology and Evolution. The review was carried out in collaboration with colleagues from international institutions including the New York University College of Dentistry, the Natural History Museum, Arizona State University and Universidad Complutense de Madrid.

Press release from the University of York