The shoulders of 'Homo antecessor' and modern humans are similar

The shoulders of 'Homo antecessor' and modern humans are similar

The CENIEH has published a paper in the journal Scientific Reports which concludes that Homo antecessor had a shoulder development analogous to that in H. sapiens, although its growth was faster
Homo antecessor shoulders
Homo antecessor scapulae. Credits: D. Garcia Martínez et al

The shape of our shoulders was already present in the Lower Pleistocene, according to a pioneering study published today in the journal Scientific Reports, carried out by Daniel García Martínez and José María Bermúdez de Castro, paleoanthropologists at the Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), in collaboration with David Green of Campbell University (USA).

Studying the shoulder (technically known as the "shoulder girdle") furnishes information on points significant for human evolution such as locomotion, body shape, the possibility of climbing with ease or the ability to launch objects like stones or spears with high accuracy.

The authors of this work were able to study for the first time shoulder growth and development in the species Homo antecessor, dated to 850,000 years old, using tools from virtual anthropology and 3D geometric morphometry. The results show that the course of development of the shoulder in this species was very similar to that in H. sapiens, although the growth might have been faster.

Almost one million years ago, our evolution had already attained almost all the biomechanical capacities characterizing the shoulder in modern humans, and it had definitively parted ways from the abilities still then retained by the more archaic species of the human phylogeny, including climbing with great agility.

 To verify the changes undergone by this part of our anatomy, we need a flat bone: the shoulder blade or scapula. But, as the authors of this study state, “The fossil record of our phylogeny contains barely a handful of these highly delicate bones, which has posed enormous difficulties to studying the growth and development of the shoulders during human evolution”.

Two key fossils

By good luck, at level TD6 of the Gran Dolina site, situated in the Sierra de Atapuerca (Burgos), two scapulae have been conserved: one from a child and the other from an individual of age equivalent to a modern adolescent. These fossils were recovered during the excavation in the first decade of the twenty-first century and belonged to the species H. antecessor.

“In an earlier study of these two fossils, it had been noticed that the morphology of the scapulae was similar to our own. But until now, the growth and development model for the shoulders had remained unknown, and this work has now allowed us to check that our shoulder girdle bones have undergone modifications in accordance with different capacities”, says Bermúdez de Castro.

Comparative study

With the scant information available, it was known that the scapulae of Australopithecus species were similar in some ways to those of chimpanzees or gorillas but were different from our own. “We know that the development of our most archaic ancestors was very similar to that of the anthropoid apes, and the morphology of their shoulders shows that they still retained the capacity to climb with ease. We, on the contrary, have lost this ability”, explains García Martínez.

Comparative of scapulae. Credits: D.García Martínez et al

To determine when our anatomical peculiarities arose, in addition to virtual anthropology and 3D geometric morphometry, the researchers used complex statistical methods to study the development of the shoulder girdle in the species H. antecessor, comparing it with other species from the Pliocene and Lower Pleistocene, such as Australopithecus sediba and A. afarensis. A very broad sample from H. sapiens and chimpanzees (Pan troglodytes) was also used.

“This study shows that although there exist slight morphological differences between the scapulae of H. antecessor and H. sapiens, the former were much more similar to modern humans, to H. erectus and even to Australopithecus than to chimpanzees”, comments García Martínez.

With regard to how the scapulae grew, it was also seen that this was very different from what happens in chimpanzees, and comparable with H. sapiens. “However, it is true that the data seem to point to growth being more rapid in H. antecessor, as highlighted by the CENIEH research team on the basis of dental evidence”, emphasizes Bermúdez de Castro.

This paper lays the foundations for how the shoulder girdle developed in Lower Pleistocene species, and opens the door to new research studying shoulder development in fossil species, as it may become possible to expand the timeframe and study this development even in Pliocene species like the genus Australopithecus.

Full bibliographic information

García-Martínez, D., Green, D., Bermúdez de Castro, J.M. 2021. Evolutionary development of the Homo antecessor scapulae (Gran Dolina site, Atapuerca) suggests a modern-like development for Lower Pleistocene Homo. Scientific Reports. DOI: 10.1038/s41598-021-83039

 

Press release from CENIEH


molar size hominins

New study of molar size regulation in hominins

New study of molar size regulation in hominins

The Dental Anthropology Group at the CENIEH has tested the inhibitory cascade model to see whether it explains the size relationships and differences in shape between the different kinds of teeth, in the molar sample from the individuals identified at the Sima de los Huesos site in the Sierra de Atapuerca.
Mandíbula AT-1 de la Sima de los Huesos. Credits: Mario Modesto

The molar size relationship is one of the peculiar characteristics of the different species of hominins and various theories have been proposed to account for this, as well as the differences in shape between the different kinds of teeth (incisors, canines, premolars and molars). The latest theory, called the inhibitory cascade model, arose out of experiments with mice embryos, and in 2016 it was applied theoretically to fossil hominins, with satisfactory results.

It appeared that all hominins satisfy the inhibitory cascade model. In a paper by the Dental Anthropology Group at the Centro Nacional de Investigación sobre la evolución Humana (CENIEH), published recently in the Journal of Anatomy, this model was tested on the molar sample from the individuals identified at the Sima de los Huesos site, situated in the Sierra de Atapuerca (Burgos).

The results match the model generated in mice extraordinarily well, thus confirming the theory's utility once more. “Nevertheless, our conclusions have brought out an anomaly in the model, when it is applied to the oldest species of the genus Homo”, explains José María Bermúdez de Castro, Paleobiology Program Coordinator at the CENIEH and lead author of this work.

Increasing and decreasing patterns

In the genera Ardipithecus, Australopithecus and Paranthropus, as well as in Homo habilis, the size pattern is increasing and fits the premises of the inhibitory cascade model perfectly. The same thing happens in Homo sapiens, except that the pattern is decreasing, with the first molar larger than the second, which in turn is bigger than the third one (wisdom tooth).

Application of the inhibitory cascade model had led to the assumption that the switch from increasing to decreasing pattern would have arisen a little under two million years ago, perhaps coinciding with the transition between the genera Australopithecus and Homo. “However, in our work we noticed that this change could have required at least a million years to take place”, states Bermúdez de Castro.

The hominins from the Sima de los Huesos, which are around 430,000 years old, are a good example of that transition, whereas most specimens of Homo ergaster, Homo erectus, Homo antecessor and Homo heidelbergensis, as well as other species, do not fit the inhibitory cascade model. “Our idea is to continue our research to determine which genetic mechanisms lie behind this anomaly in the model”, says Bermúdez de Castro.

Full bibliographic information

Bermúdez de Castro et al. 2020. Testing the inhibitory cascade model in the Middle Pleistocene Sima de los Huesos (Sierra de Atapuerca, Spain) hominin sample. Journal of Anatomy. DOI: 10.1111/joa.13292
Press release from CENIEH.

Environmental and climatic changes influenced the origin of the genus 'Homo'

Environmental and climate changes influenced the origin of the genus 'Homo'

CENIEH participates in a study on Mille-Logya, a new site located in the emblematic Afar region (Ethiopia), which reinforces the relationship between the origin of the Homo genus and the climatic and environmental changes that took place on the African continent between 2.5 and 3 million years ago
climatic changes Homo Mille-Logya
Hominin remains from the MLP area. Credits: Z. Alemseged et al

Several hypothesis suggest a link between the origin of the genus Homo and the climatic and environmental changes that took place in Africa between 2.5 and 3 million years ago. The geological and paleontological analyses of a new site, Mille-Logya, located in the emblematic region of Afar (Ethiopia) where the species Australopithecus afarensis was found, reinforces with new data these hypothesis.

A new study, published in Nature communication by an international team led by Zeresenay Alemseged from the University of Chicago, and with the participation of the geochronologist from the Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Mark Jan Sier, reports the finding of four hominin remains (two ulnae fragments, a calvarium fragment and an upper second molar) together with a large sample of faunal remains that include hypopothamus, bovids, giraffes, crocodiles, hyenas and horses.

The fossil samples come from three different areas, Gafura, Seraitu and Uraitele dated from 2.4 to 2.9 million years. “This site represents a unique opportunity to study fossils from an age range that normally is missing in the Afar area”, says Mark Jan Sier, from the Geochronology and Geology Programme of CENIEH and who contributed to the dating of the site with the paleomagnetic analysis.

The comparison of the fauna from the three different areas within Mille-Logya, as well as with that found in the nearby localities of Hadar and Dikika, where famous Australopithecus afarensis samples were found, suggests an important faunal and paleoenvironmental change during this period in this region of Africa.

The faunal and paleoenvironmental reconstructions suggest that the earliest members of Homo were associated with more open environments than Australopithecus was. The in situ faunal change at Mille-logya may be linked to environmental and climatic factors that may have caused Homo to emerge in from Australopithecus or to migrate to the region as part of a fauna adapted to more open habitats.

Full bibliographic information

Alemseged, Z., Wynn, J. G., Geraads, D., Reed, D., Barr, W. A., Bobe, R., McPherron, S. P., Deino, A., Alene, M., Sier, M. J., Roman, D., & Mohan, J. (2020). Fossils from Mille-Logya, Afar, Ethiopia, elucidate the link between Pliocene environmental changes and Homo origins. Nature Communications, 11, 2480. doi: 10.1038/s41467-020-16060-8.
Press release from CENIEH